Compare commits

..

18 Commits

Author SHA1 Message Date
AlexisDanlos
34d5990a3b feat: add method to retrieve latest call log and update history, enhancing call tracking
Some checks failed
/ mirror (push) Successful in 4s
/ deploy (push) Failing after 1m20s
/ build-stealth (push) Successful in 10m43s
/ build (push) Successful in 10m44s
2025-07-07 20:17:00 +00:00
355e040322 Upgrade Stealth to release 2025-07-07 20:17:00 +00:00
AlexisDanlos
e9e50dd4a2 feat: ensure call page closes on hangup and disconnection, improving navigation flow 2025-07-07 20:17:00 +00:00
AlexisDanlos
95f747280a feat: add SIM name handling to call history and display in UI 2025-07-07 20:17:00 +00:00
AlexisDanlos
10728ad6e0 feat: enhance history page with lifecycle management and background loading 2025-07-07 20:17:00 +00:00
f440767b38 feat: add human-readable SIM name handling and update UI accordingly 2025-07-07 20:17:00 +00:00
68761b6e44 feat: improve call handling with manual hangup support and UI updates 2025-07-07 20:17:00 +00:00
71485a4346 feat: enhance SIM management with state tracking and UI updates 2025-07-07 20:17:00 +00:00
c8ea9204ff feat: implement pending SIM switch handling and improve call state management 2025-07-07 20:17:00 +00:00
cdd3a470c0 feat: add SIM selection dialog and integrate SIM slot handling for calls 2025-07-07 20:17:00 +00:00
29dfc0a2ac feat: update minimum SDK version and integrate SIM data handling 2025-07-07 20:17:00 +00:00
31ef173949 feat: implement default SIM selection in settings 2025-07-07 20:17:00 +00:00
35558c6a43 Readme.md Enhancement (#66)
All checks were successful
/ mirror (push) Successful in 4s
Reviewed-on: #66
2025-07-07 18:57:16 +00:00
ee27a82c0a Partial Doc update for Greenlight (#65)
All checks were successful
/ mirror (push) Successful in 4s
/ deploy (push) Successful in 39s
Co-authored-by: STCB <stephane.corbiere@epitech.eu>
Reviewed-on: #65
Co-authored-by: STCB <21@stcb.cc>
Co-committed-by: STCB <21@stcb.cc>
2025-07-06 23:09:20 +00:00
4ce487c1c9 Updating DryBox (#64)
All checks were successful
/ mirror (push) Successful in 4s
Co-authored-by: STCB <stephane.corbiere@epitech.eu>
Reviewed-on: #64
2025-07-06 22:53:08 +00:00
c793793c8e Update README.md (#62)
All checks were successful
/ mirror (push) Successful in 4s
Reviewed-on: #62
Co-authored-by: florian <florian.griffon@epitech.eu>
Co-committed-by: florian <florian.griffon@epitech.eu>
2025-07-06 21:29:51 +00:00
ed07022916 feat: ED25519 keypair instead of P256 (#59)
All checks were successful
/ mirror (push) Successful in 5s
/ build (push) Successful in 10m38s
/ build-stealth (push) Successful in 10m43s
Reviewed-on: #59
Co-authored-by: Florian Griffon <florian.griffon@epitech.eu>
Co-committed-by: Florian Griffon <florian.griffon@epitech.eu>
2025-06-14 22:47:52 +00:00
675b1c0c7b Protocol_Noise_XK + Drybox (#58)
Some checks failed
/ mirror (push) Failing after 3s
Merging the protocol in the drybox

Co-authored-by: stcb <21@stcb.cc>
Co-authored-by: ange <ange@yw5n.com>
Co-authored-by: alexis <alexis.danlos@epitech.eu>
Co-authored-by: Bartosz <bartosz.michalak@epitech.eu>
Co-authored-by: STCB <21@stcb.cc>
Co-authored-by: STCB <stcb@2001-14ba-72-9b00--187.rev.dnainternet.fi>
Reviewed-on: #58
Co-authored-by: Florian Griffon <florian.griffon@epitech.eu>
Co-committed-by: Florian Griffon <florian.griffon@epitech.eu>
2025-06-07 19:11:15 +00:00
57 changed files with 4434 additions and 3255 deletions

1
.gitignore vendored
View File

@ -9,6 +9,7 @@
.history
.svn/
migrate_working_dir/
protocol_prototype/venv
# IntelliJ related
*.iml

View File

@ -1,21 +1,72 @@
# Icing
---
gitea: none
include_toc: true
---
## Encrypting phone calls on an analog audio level
# Icing end-to-end-encrypted phone calls without data
Experimental α-stage • Apache-2.0 • Built at Epitech
&#x20;
> **Icing** runs a Noise-XK handshake, Codec2 and 4-FSK modulation over the plain voice channel, so any GSM/VoLTE call can be upgraded to private, authenticated audio - **no servers and no IP stack required.**
An Epitech Innovation Project
*By*
**Bartosz Michalak - Alexis Danlos - Florian Griffon - Ange Duhayon - Stéphane Corbière**
---
The **docs** folder contains documentation about:
#### Epitech
- The Beta Test Plan
- The Delivrables
#### Icing
- The project
- A user manual
- Our automations
## 📖 Detailed design
See [`docs/Icing.md`](docs/Icing.md) for protocol goals, threat model, and technical architecture.
## 🔨 Quick start (developer preview, un-protocoled dialer)
```bash
# on an Android phone (Android 12+)
git clone https://git.gmoker.com/icing/monorepo
cd dialer
# Requires Flutter and ADB or a virtual device
flutter run
```
> ⚠️ This is an **alpha prototype**: expect crashes, missing UX, and incomplete FEC.
You can join us in Telegram or Reddit !
https://t.me/icingdialer
https://www.reddit.com/r/IcingDialer/
## ✨ Features (α1 snapshot)
- [DryBox Only] Noise *XK* handshake (X25519, AES-GCM, SHA-256)
- Static keys = Ed25519 (QR share)
- [DryBox Only] Voice path: Codec2 → encrypted bit-stream → 4-FSK → analog channel
- GSM simulation in DryBox for off-device testing
## 🗺️ Project status
| Stage (roadmap) | Dialer app | Protocol | DryBox | Docs |
| --------------------- | -------------------------- | ------------------ | ----------------- | ----------------- |
| **Alpha 1 (Q3-2025)** | 🚧 UI stub, call hook | Key gestion | ⚠️ Qt demo, Alpha 1 Working | 📝 Draft complete |
| Alpha 2 (Q4-2025) | 🛠️ Magisk flow | 🔄 Adaptive FEC | 🔄 Stress tests | 🔄 Expanded |
| **Beta 1 (Feb 2026)** | 🎉 Public release | 🔐 Audit pass | ✅ CI | ✅ |
## 🤝 How to help
- **Crypto researchers** Poke holes in the protocol draft.
- **Android security hackers** - Review our Kotlin integrations.
- **ROM maintainers** - Let's talk about an integration !
Open an issue or report here [![Give Feedback](https://img.shields.io/badge/Feedback-Form-blue)](https://cryptpad.fr/form/#/2/form/view/Tgm5vQ7aRgR6TKxy8LMJcJ-nu9CVC32IbqYOyOG4iUs/)
## License
Apache License 2.0 - see [`LICENSE`](LICENSE).
---
Made with ☕ by four Epitech students.

View File

@ -1,28 +0,0 @@
package com.icing.dialer
import java.security.KeyStore
object KeyDeleterHelper {
private const val ANDROID_KEYSTORE = "AndroidKeyStore"
/**
* Deletes the key pair associated with the given alias from the Android Keystore.
*
* @param alias The alias of the key pair to delete.
* @throws Exception if deletion fails.
*/
fun deleteKeyPair(alias: String) {
try {
val keyStore = KeyStore.getInstance(ANDROID_KEYSTORE).apply { load(null) }
if (!keyStore.containsAlias(alias)) {
throw Exception("No key found with alias \"$alias\" to delete.")
}
keyStore.deleteEntry(alias)
} catch (e: Exception) {
throw Exception("Failed to delete key pair: ${e.message}", e)
}
}
}

View File

@ -1,47 +0,0 @@
package com.icing.dialer
import android.security.keystore.KeyGenParameterSpec
import android.security.keystore.KeyProperties
import java.security.KeyPairGenerator
import java.security.KeyStore
object KeyGeneratorHelper {
private const val ANDROID_KEYSTORE = "AndroidKeyStore"
/**
* Generates an ECDSA P-256 key pair and stores it in the Android Keystore.
*
* @param alias Unique identifier for the key pair.
* @throws Exception if key generation fails.
*/
fun generateECKeyPair(alias: String) {
try {
val keyStore = KeyStore.getInstance(ANDROID_KEYSTORE).apply { load(null) }
// Check if the key already exists
if (keyStore.containsAlias(alias)) {
throw Exception("Key with alias \"$alias\" already exists.")
}
val keyPairGenerator = KeyPairGenerator.getInstance(
KeyProperties.KEY_ALGORITHM_EC,
ANDROID_KEYSTORE
)
val parameterSpec = KeyGenParameterSpec.Builder(
alias,
KeyProperties.PURPOSE_SIGN or KeyProperties.PURPOSE_VERIFY
)
.setAlgorithmParameterSpec(java.security.spec.ECGenParameterSpec("secp256r1"))
.setDigests(KeyProperties.DIGEST_SHA256, KeyProperties.DIGEST_SHA384, KeyProperties.DIGEST_SHA512)
.setUserAuthenticationRequired(false) // Set to true if you require user authentication
.build()
keyPairGenerator.initialize(parameterSpec)
keyPairGenerator.generateKeyPair()
} catch (e: Exception) {
throw Exception("Failed to generate EC key pair: ${e.message}", e)
}
}
}

View File

@ -1,6 +1,6 @@
package com.icing.dialer
import java.security.PrivateKey
import android.os.Build
import android.security.keystore.KeyGenParameterSpec
import android.security.keystore.KeyProperties
import android.util.Base64
@ -8,15 +8,21 @@ import io.flutter.plugin.common.MethodCall
import io.flutter.plugin.common.MethodChannel
import java.security.KeyPairGenerator
import java.security.KeyStore
import java.security.PrivateKey
import java.security.Signature
import java.security.spec.ECGenParameterSpec
class KeystoreHelper(private val call: MethodCall, private val result: MethodChannel.Result) {
private val ANDROID_KEYSTORE = "AndroidKeyStore"
fun handleMethodCall() {
if (Build.VERSION.SDK_INT < Build.VERSION_CODES.R) {
result.error("UNSUPPORTED_API", "ED25519 requires Android 11 (API 30) or higher", null)
return
}
when (call.method) {
"generateKeyPair" -> generateECKeyPair()
"generateKeyPair" -> generateEDKeyPair()
"signData" -> signData()
"getPublicKey" -> getPublicKey()
"deleteKeyPair" -> deleteKeyPair()
@ -25,7 +31,7 @@ class KeystoreHelper(private val call: MethodCall, private val result: MethodCha
}
}
private fun generateECKeyPair() {
private fun generateEDKeyPair() {
val alias = call.argument<String>("alias")
if (alias == null) {
result.error("INVALID_ARGUMENT", "Alias is required", null)
@ -44,16 +50,14 @@ class KeystoreHelper(private val call: MethodCall, private val result: MethodCha
KeyProperties.KEY_ALGORITHM_EC,
ANDROID_KEYSTORE
)
val parameterSpec = KeyGenParameterSpec.Builder(
alias,
KeyProperties.PURPOSE_SIGN or KeyProperties.PURPOSE_VERIFY
)
.setAlgorithmParameterSpec(java.security.spec.ECGenParameterSpec("secp256r1"))
.setDigests(KeyProperties.DIGEST_SHA256, KeyProperties.DIGEST_SHA384, KeyProperties.DIGEST_SHA512)
.setAlgorithmParameterSpec(ECGenParameterSpec("ed25519"))
.setDigests(KeyProperties.DIGEST_SHA256)
.setUserAuthenticationRequired(false)
.build()
keyPairGenerator.initialize(parameterSpec)
keyPairGenerator.generateKeyPair()
@ -73,17 +77,14 @@ class KeystoreHelper(private val call: MethodCall, private val result: MethodCha
try {
val keyStore = KeyStore.getInstance(ANDROID_KEYSTORE).apply { load(null) }
val privateKey = keyStore.getKey(alias, null) as? PrivateKey ?: run {
result.error("KEY_NOT_FOUND", "Private key not found for alias \"$alias\".", null)
return
}
val signature = Signature.getInstance("SHA256withECDSA")
val signature = Signature.getInstance("Ed25519")
signature.initSign(privateKey)
signature.update(data.toByteArray())
val signedBytes = signature.sign()
val signatureBase64 = Base64.encodeToString(signedBytes, Base64.DEFAULT)
result.success(signatureBase64)
} catch (e: Exception) {

View File

@ -1,30 +0,0 @@
package com.icing.dialer
import java.security.KeyStore
import java.security.PublicKey
import android.util.Base64
object PublicKeyHelper {
private const val ANDROID_KEYSTORE = "AndroidKeyStore"
/**
* Retrieves the public key associated with the given alias.
*
* @param alias The alias of the key pair.
* @return The public key as a Base64-encoded string.
* @throws Exception if retrieval fails.
*/
fun getPublicKey(alias: String): String {
try {
val keyStore = KeyStore.getInstance(ANDROID_KEYSTORE).apply { load(null) }
val certificate = keyStore.getCertificate(alias) ?: throw Exception("Certificate not found for alias \"$alias\".")
val publicKey: PublicKey = certificate.publicKey
return Base64.encodeToString(publicKey.encoded, Base64.DEFAULT)
} catch (e: Exception) {
throw Exception("Failed to retrieve public key: ${e.message}", e)
}
}
}

View File

@ -1,37 +0,0 @@
package com.icing.dialer
import android.security.keystore.KeyProperties
import java.security.KeyStore
import java.security.Signature
import android.util.Base64
import java.security.PrivateKey
object SignerHelper {
private const val ANDROID_KEYSTORE = "AndroidKeyStore"
/**
* Signs the provided data using the private key associated with the given alias.
*
* @param alias The alias of the key pair.
* @param data The data to sign.
* @return The signature as a Base64-encoded string.
* @throws Exception if signing fails.
*/
fun signData(alias: String, data: ByteArray): String {
try {
val keyStore = KeyStore.getInstance(ANDROID_KEYSTORE).apply { load(null) }
val privateKey = keyStore.getKey(alias, null) as? PrivateKey?: throw Exception("Private key not found for alias \"$alias\".")
val signature = Signature.getInstance("SHA256withECDSA")
signature.initSign(privateKey)
signature.update(data)
val signedBytes = signature.sign()
return Base64.encodeToString(signedBytes, Base64.DEFAULT)
} catch (e: Exception) {
throw Exception("Failed to sign data: ${e.message}", e)
}
}
}

View File

@ -10,7 +10,7 @@ class AsymmetricCryptoService {
final String _aliasPrefix = 'icing_';
final Uuid _uuid = Uuid();
/// Generates an ECDSA P-256 key pair with a unique alias and stores its metadata.
/// Generates an ED25519 key pair with a unique alias and stores its metadata.
Future<String> generateKeyPair({String? label}) async {
try {
// Generate a unique identifier for the key

View File

@ -3,7 +3,7 @@
An Epitech Innovation Project
*By*
**Bartosz Michalak - Alexis Danlos - Florian Griffon - Ange Duhayon - Stéphane Corbière**
**Bartosz Michalak - Alexis Danlos - Florian Griffon - Stéphane Corbière**
---
@ -17,13 +17,25 @@ An Epitech Innovation Project
## Introduction to Icing
Icing is the name of our project, which is divided in **two interconnected goals**:
1. Provide an end-to-end (E2E) encryption **code library**, based on Eliptic Curve Cryptography (ECC), to encrypt phone-calls on an **analog audio** level.
2. Provide a reference implementation in the form of a totally seamless Android **smartphone dialer** application, that anybody could use without being aware of its encryption feature.
Icing is the name of our project, which is divided in **three interconnected goals**:
1. Build a mutual-authentication and end-to-end encryption protocol, NAAP, for half and full-duplex audio communication, network agnostic. Network Agnostic Authentication Protocol.
2. Provide a reference implementation in the form of an **Android Package**, that anybody can use to implement the protocol into their application.
3. Provide a reference implementation in the form of an **Android Dialer**, that uses the android package, and that could seamlessly replace any Android user's default dialer.
This idea came naturally to our minds, when we remarked the lack of such tool.
Where "private messaging" and other "encrypted communication" apps flourish, nowadays, they **all** require an internet access to work.
### Setting a new security standard
#### ***"There is no way to create a backdoor that only the good guys can walk through"***
> (*Meredith Whittaker - President of Signal Fundation - July 2023, Channel 4*)
Enabling strong authentication on the phone network, either cellular or cable, would change the way we use our phone.
Reduced phone-related scams, simplified and safer banking or government services interactions, reduced dependency to the internet, and more, are the benefits both consumers and organizations would enjoy.
Encrypting the data end-to-end increases security globally by a considerable factor, particularly in low-bandwidth / no internet areas, and the added privacy would benefit everyone.
---
### Privacy and security in telecoms should not depend on internet availability.
@ -35,21 +47,6 @@ So in a real-world, stressful and harsh condition, affording privacy or security
Our solution is for the every-man that is not even aware of its smart phone weakness, as well as for the activists or journalists surviving in hostile environment around the globe.
### Setting a new security standard
#### ***"There is no way to create a backdoor that only the good guys can walk through"***
> (*Meredith Whittaker - President of Signal Fundation - July 2023, Channel 4*)
If the police can listen to your calls with a mandate, hackers can, without mandate.
Many online platforms, such as online bank accounts, uses phone calls, or voicemails to drop security codes needed for authentication. The idea is to bring extra security, by requiring a second factor to authenticate the user, but most voicemails security features have been obsolete for a long time now.
**But this could change with globalized end-to-end encryption.**
This not only enables obfuscation of the transmitted audio data, but also hard peer authentication.
This means that if you are in an important call, where you could communicate sensitive information such as passwords, or financial orders, using Icing protocol you and your peer would know that there is no man in the middle, listening and stealing information, and that your correspondent really is who it says.
---
### Icing's strategy

View File

@ -1,71 +1,182 @@
# User Manual for Icing Dialer
# User Manual
## Introduction
The Icing Dialer is an open-source mobile application designed to enable end-to-end encrypted voice calls over GSM/LTE networks, ensuring privacy without reliance on the internet, servers, or third-party infrastructure. This manual provides comprehensive guidance for three audiences: average users, security experts, and developers. A final section outlines our manual testing policy to ensure the application's reliability and security.
**Utilization documentation.**
Written with chapters for the average Joe user, security experts, and developers.
The average-user section is only about what the average-user will know from Icing: its dialer reference implementation.
The security expert section will cover all the theory behind our reference implementation, and the Icing protocol. This section can serve as an introduction / transition for the next section:
The developer section will explain our code architecture and concepts, going in-depth inside the reference implementation and the Icing protocol library.
This library will have dedicated documentation in this section, so any developer can implement it in any desired way.
Lastly, as a continuation of the developer section, the Manual Test section will cover our manual testing policy.
- **Average User**: Instructions for using the Icing Dialer as a transparent replacement for the default phone dialer.
- **Security Expert**: Technical details of the Icing protocol, including cryptographic mechanisms and implementation.
- **Developer**: In-depth explanation of the code architecture, Icing protocol library, and integration guidelines.
- **Manual Tests**: Overview of the manual testing policy for validating the application and protocol.
---
## Summary
- [Average User](#averageuser)
- [Security Expert](#icingsstrategy)
- [Average User](#average-user)
- [Security Expert](#security-expert)
- [Developer](#developer)
- [Manual Tests](#manualtests)
- [Manual Tests](#manual-tests)
---
## Average User
Use the Icing dialer like your normal dialer, if you can't do that we can't help, you dumb retard lmfao.
The Icing Dialer is a privacy-focused mobile application that replaces your default phone dialer, providing secure, end-to-end encrypted voice calls over GSM/LTE networks. It is designed to be intuitive and indistinguishable from a standard dialer, ensuring seamless use for all users.
### Key Features
- **Seamless Dialer Replacement**: Functions as a full replacement for your phones default dialer, supporting standard call features and encrypted calls.
- **Cryptographic Key Pair Generation**: Automatically generates an ED25519 key pair during setup for secure communications, stored securely using the Android Keystore.
- **Secure Contact Sharing**: Adds and shares contacts via QR codes or VCF files, ensuring privacy.
- **Automatic Call Encryption**: Encrypts calls with compatible Icing Dialer users using the Noise protocol, encoded into the analog audio signal via Codec2 and 4FSK modulation.
- **On-the-Fly Pairing**: Detects other Icing Dialer users and offers encrypted pairing during calls (optional, under development).
- **Call Management**: Includes call history, contact management, visual voicemail, and features like mute, speaker, and SIM selection.
- **Privacy Protection**: Safeguards sensitive communications with secure voice authentication and encrypted voicemail.
### Getting Started
1. **Installation**: Install the Icing Dialer from a trusted source (e.g., a partnered AOSP fork or Magisk module for rooted Android devices).
2. **Setup**: Upon first launch, the app generates an ED25519 key pair using the Android Keystore. Follow prompts to complete setup.
3. **Adding Contacts**: Use the QR code or VCF import feature to securely add contacts. Scan a contacts QR code or import a VCF file to establish a secure connection.
4. **Making Calls**: Dial numbers using the full dialer interface (numbers, *, #). The app uses the Android Telephony API to detect compatible users and automatically encrypts calls when possible.
5. **Encrypted Calls**: Calls to known contacts with public keys are automatically encrypted. A data rate and error indicator provide real-time feedback. Use the disable encryption button if needed.
6. **Call History and Contacts**: Access call history with filters for missed, incoming, and outgoing calls. Tap a call to view details or open a contact modal. Manage contacts with search, favorites, and blocklist features.
7. **Visual Voicemail**: Play, pause, or manage voicemails with quick links to call, text, block, or share numbers.
8. **Settings**: Configure default SIM, manage public keys, and access the blocklist via the settings menu.
### Troubleshooting
- **FAQs**: Available on our Reddit and Telegram channels for common issues and setup guidance.
- **Feedback**: Submit feedback via our anonymous CryptPad form for prompt issue resolution.
### Example Scenarios
- **Secure Voicemail Access**: Mathilda, 34, uses Icing to securely retrieve a PayPal authentication code from her voicemail, protected by her registered Icing public key.
- **Authenticated Calls**: Jeff, 70, authenticates with his bank using encrypted DTMF transmission, ensuring secure and verified communication.
- **Private Communication**: Elise, 42, a journalist, uses Icing to make discreet, encrypted calls despite unreliable or monitored networks.
- **Emergency Calls Abroad**: Paul, 22, a developer, uses Icing to securely assist colleagues with a critical issue while abroad, relying only on voice calls.
---
## Security Expert
SecUriTy eXpeRt
The Icing Dialer is the reference implementation of the Icing protocol, an open, decentralized encryption protocol for telephony. This section details the cryptographic and technical foundations, focusing on security principles.
### Icing Protocol Overview
The Icing protocol enables end-to-end encrypted voice calls over GSM/LTE networks by encoding cryptographic data into the analog audio signal. Key components include:
- **End-to-End Encryption**: Utilizes the Noise protocol with XX (mutual authentication) and XK (known-key) handshake patterns for secure session establishment, using ED25519 key pairs.
- **Perfect Forward Secrecy**: Ensures session keys are ephemeral and discarded after use, with future sessions salted using pseudo-random values derived from past calls.
- **Codec2 and 4FSK**: Voice data is compressed using Codec2 and modulated with 4FSK (Four Frequency Shift Keying) for transmission over GSM/LTE.
- **Secure Contact Pairing**: Uses QR codes or VCF files for secure key exchange, preventing man-in-the-middle attacks.
- **Encrypted DTMF**: Supports secure transmission of DTMF signals for authentication scenarios.
- **Forward Error Correction (FEC)**: Detects up to 50% of transmission errors in Alpha 1, with plans for stronger FEC (>80% detection, 20% correction) in future iterations.
- **Decentralized Design**: Operates without servers or third-party intermediaries, minimizing attack surfaces.
- **Voice Authentication**: Implements cryptographic voice authentication to verify caller identity.
### Security Implementation
- **Cryptographic Framework**: Uses ED25519 key pairs for authentication and encryption, generated and stored securely via the Android Keystore. The Noise protocol ensures secure key exchange and session setup. AES-256 and ECC (P-256, ECDH) are employed for data encryption.
- **Analog Signal Encoding**: Codec2 compresses voice data, and 4FSK modulates encrypted data into the analog audio signal, ensuring compatibility with GSM/LTE networks.
- **Threat Model**: Protects against eavesdropping, interception, replay attacks, and unauthorized access. Includes replay protection mechanisms and assumes adversaries may control network infrastructure but not device endpoints.
- **Data Privacy**: Minimizes data storage (only encrypted keys and minimal metadata), with no unencrypted call metadata stored. Sensitive data is encrypted at rest.
- **Current Status**: Protocol Alpha 1, tested in DryBox, validates peer ping, ephemeral key management, handshakes, real-time encryption, stream compression, and 4FSK transmission. Alpha 2 will enhance FEC and on-the-fly key exchange.
### Future Considerations
- Develop a full RFC for the Icing protocol, documenting peer ping, handshakes, and FEC.
- Optimize Codec2 and 4FSK for improved audio quality and transmission reliability.
- Implement embedded silent data transmission (e.g., DTMF) and on-the-fly key exchange.
- Enhance interoperability with existing standards (e.g., SIP, WebRTC).
---
## Developer
int main;
The Icing Dialer and its protocol are open-source and extensible. This section explains the code architecture, Icing protocol library, and guidelines for integration into custom applications.
---
### Code Architecture
The Icing Dialer is developed in two implementations:
- **Root-app**: For rooted Android devices, deployed via a Magisk module (~85% complete for Alpha 1).
- **AOSP-app**: Integrated into a custom AOSP fork for native support, pending partnerships with AOSP-based projects (e.g., GrapheneOS, LineageOS).
The application is written in Kotlin, leveraging the Android Telephony API for call management and a modular architecture:
- **UI Layer**: A responsive, intuitive interface resembling a default phone dialer, with accessibility features, contact management, and call history.
- **Encryption Layer**: Manages ED25519 key pair generation (via Android Keystore or RAM for export), Noise protocol handshakes (XX and XK), Codec2 compression, and 4FSK modulation.
- **Network Layer**: Interfaces with GSM/LTE networks via the Android Telephony API to encode encrypted data into analog audio signals.
### Icing Protocol Library
The Kotlin-based Icing protocol library (~75% complete for Alpha 1) enables third-party applications to implement the Icing protocol. Key components include:
- **KeyPairGenerator**: Generates and manages ED25519 key pairs, supporting secure (Android Keystore) and insecure (RAM) generation, with export/import capabilities.
- **NoiseProtocolHandler**: Implements XX and XK handshakes for secure session establishment, ensuring Perfect Forward Secrecy.
- **QRCodeHandler**: Manages secure contact sharing via QR codes or VCF files.
- **AudioEncoder**: Compresses voice with Codec2 and modulates encrypted data with 4FSK.
- **CallManager**: Uses the Android Telephony API to detect peers, initiate calls, and handle DTMF transmission.
- **FECModule**: Implements basic FEC for detecting 50% of transmission errors, with plans for enhanced detection and correction.
#### Integration Guide
1. **Include the Library**: Add the Icing protocol library to your project (available upon Beta release).
2. **Initialize KeyPairGenerator**: Generate an ED25519 key pair using Android Keystore for secure storage or RAM for exportable keys.
3. **Implement NoiseProtocolHandler**: Configure XX or XK handshakes for authentication and session setup.
4. **Integrate QRCodeHandler**: Enable contact sharing via QR codes or VCF files.
5. **Use AudioEncoder**: Compress voice with Codec2 and modulate with 4FSK for GSM/LTE transmission.
6. **Leverage CallManager**: Manage calls and DTMF via the Android Telephony API.
7. **Test with DryBox**: Validate implementation using the Python-based DryBox environment for end-to-end call simulation.
### Development Status
- **Protocol Alpha 1**: Implemented in DryBox, supporting peer ping, ephemeral keys, handshakes, encryption, Codec2 compression, and 4FSK modulation.
- **Kotlin Library**: 75% complete, with tasks remaining for Alpha 1 completion.
- **Root-app**: 85% complete, with Magisk deployment in progress.
- **AOSP-app**: In development, pending AOSP fork partnerships.
Developers can join our Reddit or Telegram communities for updates and to contribute to the open-source project.
---
## Manual Tests
1. Call grandpa
2. Receive mum call
3. Order 150g of 95% pure Bolivian coke without encryption
4. Order again but with encryption
5. Compare results
The Icing project employs a rigorous manual testing policy to ensure the reliability, security, and usability of the Icing Dialer and its protocol. This section outlines our testing approach, incorporating beta testing scenarios and evaluation criteria.
### Testing Environment
- **DryBox**: A Python-based environment simulating end-to-end encrypted calls over a controlled network, used to validate Protocol Alpha 1 and future iterations.
- **Root-app Testing**: Conducted on rooted Android devices using Magisk modules.
- **AOSP-app Testing**: Planned for custom AOSP forks, pending partnerships.
### Manual Testing Policy
- **Usability Testing**: Beta testers evaluate the dialers intuitiveness as a drop-in replacement, testing call initiation, contact management, and voicemail. Initial tests confirm usability without prior instructions.
- **Encryption Validation**: Tests in DryBox verify end-to-end encryption using Noise protocol (XX/XK handshakes), ED25519 key pairs, Codec2, and 4FSK. Includes encrypted DTMF and FEC (50% error detection).
- **Contact Pairing**: Tests QR code and VCF-based contact sharing for security and functionality.
- **Call Scenarios**: Tests include clear calls (to non-Icing and Icing dialers), encrypted calls (to known and unknown contacts), and DTMF transmission.
- **Performance Testing**: Ensures minimal latency, low bandwidth usage, and high audio quality (clarity, minimal distortion) via Codec2/4FSK.
- **Privacy Testing**: Verifies encrypted storage of keys and minimal metadata, with no unencrypted call logs stored.
- **Integration Testing**: Validates Android Telephony API integration, permissions (microphone, camera, contacts), and background operation.
### Beta Testing Scenarios
- Clear call from Icing Dialer to another dialer (e.g., Google, Apple).
- Clear call between two Icing Dialers.
- Clear call to a known contact (with public key) without Icing Dialer.
- Encrypted call to a known contact with Icing Dialer.
- Encrypted call to an unknown contact with Icing Dialer (optional, under development).
- Create/edit/save contacts with/without public keys.
- Share/import contacts via QR code/VCF.
- Listen to voicemail and verify encryption.
- Record and verify encrypted call integrity.
- Change default SIM.
### Evaluation Criteria
- **Security**: Validates AES-256/ECC encryption, ED25519 key management, Perfect Forward Secrecy, replay protection, and end-to-end encryption integrity.
- **Performance**: Measures call setup latency, bandwidth efficiency, and audio quality (clarity, consistency).
- **Usability**: Ensures intuitive UI, seamless call handling, and robust error recovery.
- **Interoperability**: Tests compatibility with GSM/LTE networks and potential future integration with SIP/WebRTC.
- **Privacy**: Confirms encrypted data storage, minimal permissions, and no unencrypted metadata.
- **Maintainability**: Reviews code quality, modularity, and documentation for the protocol and library.
### Current Testing Status
- **Protocol Alpha 1**: Validated in DryBox for encryption, handshakes, Codec2/4FSK, and FEC.
- **Root-app**: 85% complete, undergoing usability, performance, and security testing.
- **Feedback Channels**: Anonymous feedback via CryptPad and FAQs on Reddit/Telegram inform testing.
### Future Testing Plans
- Test Protocol Alpha 2 for enhanced FEC and on-the-fly key exchange.
- Conduct AOSP-app testing with partnered forks.
- Incorporate NPS/CSAT metrics from AMAs to assess user satisfaction.
---
## Conclusion
The Icing Dialer and its protocol offer a pioneering approach to secure telephony, leveraging ED25519 key pairs, the Noise protocol, Codec2, 4FSK, and the Android Telephony API. This manual provides comprehensive guidance for users, security experts, and developers, supported by a robust testing policy. For further details or to contribute, visit our Reddit or Telegram communities.

View File

View File

@ -0,0 +1,69 @@
# Context
## Glossary
- DryBox: Our python test environment, simulating a call Initiator and Responder using the protocol through a controlled cellular network.
- Root-app: A version of the application only installable on rooted Android devices.
- AOSP-app: A version of the application imbedded in an AOSP fork, coming with an AOSP install.
- AOSP: Android Open Source Project. The bare-bone of Android maintained by google, currently Open-Source, and forked by many. GrapheneOS, LineageOS, and /e/ are examples of AOSP forks.
- Magisk module: Magisk is the reference open-source Android rooting tool, a Magisk Module is a script leveraging Magisk's root tools to install or tweak a specific app or setting with special permissions.
- Alpha 1, 2, Beta: We plan two iterations of Alpha development, leading towards a final Beta protocol and root/AOSP applications release.
## Current status:
Protocol Alpha 1 => DryBox
App => 85% done
Kotlin Lib => 75% Alpha 1 done
Partnerships => Communication engaged
## Remaining steps:
- Design and test Protocol Alpha 2
- Finish Alpha 1 Lib's implementation
- Implement Root-app Alpha 1
- Streamline Root-app tests
- Develop at least one AOSP fork partnership
- AOSP forks' local AOSP-app implementation
- AOSP forks' partnership AOSP-app implementation
- Magisk Root-app module self-hosted or official deployment
---
# Plan
Our plan is defined with monthly granularity.
Every month, a recap will be published on Telegram and Reddit about the achieved goals, suprises, and feeling on next month's goal.
- ### September & October
- Finish Alpha 1 lib's and Root-app implementation
- App features & UI improvements
- Streamlined Root-app tests
- ### November
- Magisk Root-app module
- Drybox features improvements
- Alpha 2 theory and Drybox testing
- ### December
- AOSP forks' local app implementation (AOSP-app)
- App features & UI improvements
- IF APPLICABLE: AOSP fork real partnership (i.e GrapheneOS, LineageOS, /e/, etc...)
- ### January
- Root-app & AOSP-app Alpha 2 implementation
- Entire code audit and Beta Release preparation
- Enhancement from "Alpha 2" to Beta
- ### February
- Website and community Beta Release preparation
- Official Beta Release event: Root-app and AOSP-app APK Alpha APK publication

Binary file not shown.

View File

@ -0,0 +1,253 @@
import wave
import threading
import queue
import time
import os
from datetime import datetime
from PyQt5.QtCore import QObject, pyqtSignal
# Try to import PyAudio, but handle if it's not available
try:
import pyaudio
PYAUDIO_AVAILABLE = True
except ImportError:
PYAUDIO_AVAILABLE = False
print("Warning: PyAudio not installed. Audio playback will be disabled.")
print("To enable playback, install with: sudo dnf install python3-devel portaudio-devel && pip install pyaudio")
class AudioPlayer(QObject):
playback_started = pyqtSignal(int) # client_id
playback_stopped = pyqtSignal(int) # client_id
recording_saved = pyqtSignal(int, str) # client_id, filepath
def __init__(self):
super().__init__()
self.audio = None
self.streams = {} # client_id -> stream
self.buffers = {} # client_id -> queue
self.threads = {} # client_id -> thread
self.recording_buffers = {} # client_id -> list of audio data
self.recording_enabled = {} # client_id -> bool
self.playback_enabled = {} # client_id -> bool
self.sample_rate = 8000
self.channels = 1
self.chunk_size = 320 # 40ms at 8kHz
self.debug_callback = None
if PYAUDIO_AVAILABLE:
try:
self.audio = pyaudio.PyAudio()
except Exception as e:
self.debug(f"Failed to initialize PyAudio: {e}")
self.audio = None
else:
self.audio = None
self.debug("PyAudio not available - playback disabled, recording still works")
def debug(self, message):
if self.debug_callback:
self.debug_callback(f"[AudioPlayer] {message}")
else:
print(f"[AudioPlayer] {message}")
def set_debug_callback(self, callback):
self.debug_callback = callback
def start_playback(self, client_id):
"""Start audio playback for a client"""
if not self.audio:
self.debug("Audio playback not available - PyAudio not installed")
self.debug("To enable: sudo dnf install python3-devel portaudio-devel && pip install pyaudio")
return False
if client_id in self.streams:
self.debug(f"Playback already active for client {client_id}")
return False
try:
# Create audio stream
stream = self.audio.open(
format=pyaudio.paInt16,
channels=self.channels,
rate=self.sample_rate,
output=True,
frames_per_buffer=self.chunk_size
)
self.streams[client_id] = stream
self.buffers[client_id] = queue.Queue()
self.playback_enabled[client_id] = True
# Start playback thread
thread = threading.Thread(
target=self._playback_thread,
args=(client_id,),
daemon=True
)
self.threads[client_id] = thread
thread.start()
self.debug(f"Started playback for client {client_id}")
self.playback_started.emit(client_id)
return True
except Exception as e:
self.debug(f"Failed to start playback for client {client_id}: {e}")
return False
def stop_playback(self, client_id):
"""Stop audio playback for a client"""
if client_id not in self.streams:
return
self.playback_enabled[client_id] = False
# Wait for thread to finish
if client_id in self.threads:
self.threads[client_id].join(timeout=1.0)
del self.threads[client_id]
# Close stream
if client_id in self.streams:
try:
self.streams[client_id].stop_stream()
self.streams[client_id].close()
except:
pass
del self.streams[client_id]
# Clear buffer
if client_id in self.buffers:
del self.buffers[client_id]
self.debug(f"Stopped playback for client {client_id}")
self.playback_stopped.emit(client_id)
def add_audio_data(self, client_id, pcm_data):
"""Add audio data to playback buffer"""
# Initialize frame counter for debug logging
if not hasattr(self, '_frame_count'):
self._frame_count = {}
if client_id not in self._frame_count:
self._frame_count[client_id] = 0
self._frame_count[client_id] += 1
# Only log occasionally to avoid spam
if self._frame_count[client_id] == 1 or self._frame_count[client_id] % 25 == 0:
self.debug(f"Client {client_id} audio frame #{self._frame_count[client_id]}: {len(pcm_data)} bytes")
if client_id in self.buffers:
self.buffers[client_id].put(pcm_data)
if self._frame_count[client_id] == 1:
self.debug(f"Client {client_id} buffer started, queue size: {self.buffers[client_id].qsize()}")
else:
self.debug(f"Client {client_id} has no buffer (playback not started?)")
# Add to recording buffer if recording
if self.recording_enabled.get(client_id, False):
if client_id not in self.recording_buffers:
self.recording_buffers[client_id] = []
self.recording_buffers[client_id].append(pcm_data)
def _playback_thread(self, client_id):
"""Thread function for audio playback"""
stream = self.streams.get(client_id)
buffer = self.buffers.get(client_id)
if not stream or not buffer:
return
self.debug(f"Playback thread started for client {client_id}")
while self.playback_enabled.get(client_id, False):
try:
# Get audio data from buffer with timeout
audio_data = buffer.get(timeout=0.1)
# Only log first frame to avoid spam
if not hasattr(self, '_playback_logged'):
self._playback_logged = {}
if client_id not in self._playback_logged:
self._playback_logged[client_id] = False
if not self._playback_logged[client_id]:
self.debug(f"Client {client_id} playback thread playing first frame: {len(audio_data)} bytes")
self._playback_logged[client_id] = True
# Play audio
stream.write(audio_data)
except queue.Empty:
# No data available, continue
continue
except Exception as e:
self.debug(f"Playback error for client {client_id}: {e}")
break
self.debug(f"Playback thread ended for client {client_id}")
def start_recording(self, client_id):
"""Start recording received audio"""
self.recording_enabled[client_id] = True
self.recording_buffers[client_id] = []
self.debug(f"Started recording for client {client_id}")
def stop_recording(self, client_id, save_path=None):
"""Stop recording and optionally save to file"""
if not self.recording_enabled.get(client_id, False):
return None
self.recording_enabled[client_id] = False
if client_id not in self.recording_buffers:
return None
audio_data = self.recording_buffers[client_id]
if not audio_data:
self.debug(f"No audio data recorded for client {client_id}")
return None
# Generate filename if not provided
if not save_path:
timestamp = datetime.now().strftime("%Y%m%d_%H%M%S")
save_path = f"wav/received_client{client_id}_{timestamp}.wav"
# Ensure directory exists
save_dir = os.path.dirname(save_path)
if save_dir:
os.makedirs(save_dir, exist_ok=True)
try:
# Combine all audio chunks
combined_audio = b''.join(audio_data)
# Save as WAV file
with wave.open(save_path, 'wb') as wav_file:
wav_file.setnchannels(self.channels)
wav_file.setsampwidth(2) # 16-bit
wav_file.setframerate(self.sample_rate)
wav_file.writeframes(combined_audio)
self.debug(f"Saved recording for client {client_id} to {save_path}")
self.recording_saved.emit(client_id, save_path)
# Clear recording buffer
del self.recording_buffers[client_id]
return save_path
except Exception as e:
self.debug(f"Failed to save recording for client {client_id}: {e}")
return None
def cleanup(self):
"""Clean up audio resources"""
# Stop all playback
for client_id in list(self.streams.keys()):
self.stop_playback(client_id)
# Terminate PyAudio
if self.audio:
self.audio.terminate()
self.audio = None

View File

@ -0,0 +1,220 @@
import numpy as np
import wave
import os
from datetime import datetime
from PyQt5.QtCore import QObject, pyqtSignal
import struct
class AudioProcessor(QObject):
processing_complete = pyqtSignal(str) # filepath
def __init__(self):
super().__init__()
self.debug_callback = None
def debug(self, message):
if self.debug_callback:
self.debug_callback(f"[AudioProcessor] {message}")
else:
print(f"[AudioProcessor] {message}")
def set_debug_callback(self, callback):
self.debug_callback = callback
def apply_gain(self, audio_data, gain_db):
"""Apply gain to audio data"""
# Convert bytes to numpy array
samples = np.frombuffer(audio_data, dtype=np.int16)
# Apply gain
gain_linear = 10 ** (gain_db / 20.0)
samples_float = samples.astype(np.float32) * gain_linear
# Clip to prevent overflow
samples_float = np.clip(samples_float, -32768, 32767)
# Convert back to int16
return samples_float.astype(np.int16).tobytes()
def apply_noise_gate(self, audio_data, threshold_db=-40):
"""Apply noise gate to remove low-level noise"""
samples = np.frombuffer(audio_data, dtype=np.int16)
# Calculate RMS in dB
rms = np.sqrt(np.mean(samples.astype(np.float32) ** 2))
rms_db = 20 * np.log10(max(rms, 1e-10))
# Gate the audio if below threshold
if rms_db < threshold_db:
return np.zeros_like(samples, dtype=np.int16).tobytes()
return audio_data
def apply_low_pass_filter(self, audio_data, cutoff_hz=3400, sample_rate=8000):
"""Apply simple low-pass filter"""
samples = np.frombuffer(audio_data, dtype=np.int16).astype(np.float32)
# Simple moving average filter
# Calculate filter length based on cutoff frequency
filter_length = int(sample_rate / cutoff_hz)
if filter_length < 3:
filter_length = 3
# Apply moving average
filtered = np.convolve(samples, np.ones(filter_length) / filter_length, mode='same')
return filtered.astype(np.int16).tobytes()
def apply_high_pass_filter(self, audio_data, cutoff_hz=300, sample_rate=8000):
"""Apply simple high-pass filter"""
samples = np.frombuffer(audio_data, dtype=np.int16).astype(np.float32)
# Simple differentiator as high-pass
filtered = np.diff(samples, prepend=samples[0])
# Scale to maintain amplitude
scale = cutoff_hz / (sample_rate / 2)
filtered *= scale
return filtered.astype(np.int16).tobytes()
def normalize_audio(self, audio_data, target_db=-3):
"""Normalize audio to target dB level"""
samples = np.frombuffer(audio_data, dtype=np.int16).astype(np.float32)
# Find peak
peak = np.max(np.abs(samples))
if peak == 0:
return audio_data
# Calculate current peak in dB
current_db = 20 * np.log10(peak / 32768.0)
# Calculate gain needed
gain_db = target_db - current_db
# Apply gain
return self.apply_gain(audio_data, gain_db)
def remove_silence(self, audio_data, threshold_db=-40, min_silence_ms=100, sample_rate=8000):
"""Remove silence from audio"""
samples = np.frombuffer(audio_data, dtype=np.int16)
# Calculate frame size for silence detection
frame_size = int(sample_rate * min_silence_ms / 1000)
# Detect non-silent regions
non_silent_regions = []
i = 0
while i < len(samples):
frame = samples[i:i+frame_size]
if len(frame) == 0:
break
# Calculate RMS of frame
rms = np.sqrt(np.mean(frame.astype(np.float32) ** 2))
rms_db = 20 * np.log10(max(rms, 1e-10))
if rms_db > threshold_db:
# Found non-silent region, find its extent
start = i
while i < len(samples):
frame = samples[i:i+frame_size]
if len(frame) == 0:
break
rms = np.sqrt(np.mean(frame.astype(np.float32) ** 2))
rms_db = 20 * np.log10(max(rms, 1e-10))
if rms_db <= threshold_db:
break
i += frame_size
non_silent_regions.append((start, i))
else:
i += frame_size
# Combine non-silent regions
if not non_silent_regions:
return audio_data # Return original if all silent
combined = []
for start, end in non_silent_regions:
combined.extend(samples[start:end])
return np.array(combined, dtype=np.int16).tobytes()
def save_processed_audio(self, audio_data, original_path, processing_type):
"""Save processed audio with descriptive filename"""
# Generate new filename
base_name = os.path.splitext(os.path.basename(original_path))[0]
timestamp = datetime.now().strftime("%Y%m%d_%H%M%S")
new_filename = f"{base_name}_{processing_type}_{timestamp}.wav"
# Ensure directory exists
save_dir = os.path.dirname(original_path)
if not save_dir:
save_dir = "wav"
os.makedirs(save_dir, exist_ok=True)
save_path = os.path.join(save_dir, new_filename)
try:
with wave.open(save_path, 'wb') as wav_file:
wav_file.setnchannels(1)
wav_file.setsampwidth(2)
wav_file.setframerate(8000)
wav_file.writeframes(audio_data)
self.debug(f"Saved processed audio to {save_path}")
self.processing_complete.emit(save_path)
return save_path
except Exception as e:
self.debug(f"Failed to save processed audio: {e}")
return None
def concatenate_audio_files(self, file_paths, output_path=None):
"""Concatenate multiple audio files"""
if not file_paths:
return None
combined_data = b''
sample_rate = None
for file_path in file_paths:
try:
with wave.open(file_path, 'rb') as wav_file:
if sample_rate is None:
sample_rate = wav_file.getframerate()
elif wav_file.getframerate() != sample_rate:
self.debug(f"Sample rate mismatch in {file_path}")
continue
data = wav_file.readframes(wav_file.getnframes())
combined_data += data
except Exception as e:
self.debug(f"Failed to read {file_path}: {e}")
if not combined_data:
return None
# Save concatenated audio
if not output_path:
timestamp = datetime.now().strftime("%Y%m%d_%H%M%S")
output_path = f"wav/concatenated_{timestamp}.wav"
os.makedirs(os.path.dirname(output_path), exist_ok=True)
try:
with wave.open(output_path, 'wb') as wav_file:
wav_file.setnchannels(1)
wav_file.setsampwidth(2)
wav_file.setframerate(sample_rate or 8000)
wav_file.writeframes(combined_data)
self.debug(f"Saved concatenated audio to {output_path}")
return output_path
except Exception as e:
self.debug(f"Failed to save concatenated audio: {e}")
return None

View File

@ -0,0 +1,714 @@
import sys
from PyQt5.QtWidgets import (
QApplication, QMainWindow, QWidget, QVBoxLayout, QHBoxLayout,
QPushButton, QLabel, QFrame, QSizePolicy, QStyle, QTextEdit, QSplitter,
QMenu, QAction, QInputDialog, QShortcut
)
from PyQt5.QtCore import Qt, QSize, QTimer, pyqtSignal
from PyQt5.QtGui import QFont, QTextCursor, QKeySequence
import time
import threading
from phone_manager import PhoneManager
from waveform_widget import WaveformWidget
from phone_state import PhoneState
class PhoneUI(QMainWindow):
debug_signal = pyqtSignal(str)
def __init__(self):
super().__init__()
self.setWindowTitle("DryBox - Noise XK + Codec2 + 4FSK")
self.setGeometry(100, 100, 1200, 900)
# Set minimum size to ensure window is resizable
self.setMinimumSize(800, 600)
# Auto test state
self.auto_test_running = False
self.auto_test_timer = None
self.test_step = 0
self.setStyleSheet("""
QMainWindow { background-color: #333333; }
QLabel { color: #E0E0E0; font-size: 14px; }
QPushButton {
background-color: #0078D4; color: white; border: none;
padding: 10px 15px; border-radius: 5px; font-size: 14px;
min-height: 30px;
}
QPushButton:hover { background-color: #005A9E; }
QPushButton:pressed { background-color: #003C6B; }
QPushButton#settingsButton { background-color: #555555; }
QPushButton#settingsButton:hover { background-color: #777777; }
QFrame#phoneDisplay {
background-color: #1E1E1E; border: 2px solid #0078D4;
border-radius: 10px;
}
QLabel#phoneTitleLabel {
font-size: 18px; font-weight: bold; padding-bottom: 5px;
color: #FFFFFF;
}
QLabel#mainTitleLabel {
font-size: 24px; font-weight: bold; color: #00A2E8;
padding: 15px;
}
QWidget#phoneWidget {
border: 2px solid #4A4A4A; border-radius: 10px;
background-color: #3A3A3A;
min-width: 250px;
}
QTextEdit#debugConsole {
background-color: #1E1E1E; color: #00FF00;
font-family: monospace; font-size: 12px;
border: 2px solid #0078D4; border-radius: 5px;
}
QPushButton#autoTestButton {
background-color: #FF8C00; min-height: 35px;
}
QPushButton#autoTestButton:hover { background-color: #FF7F00; }
""")
# Setup debug signal early
self.debug_signal.connect(self.append_debug)
self.manager = PhoneManager()
self.manager.ui = self # Set UI reference for debug logging
self.manager.initialize_phones()
# Main widget with splitter
main_widget = QWidget()
self.setCentralWidget(main_widget)
main_layout = QVBoxLayout()
main_widget.setLayout(main_layout)
# Create splitter for phones and debug console
self.splitter = QSplitter(Qt.Vertical)
main_layout.addWidget(self.splitter)
# Top widget for phones
phones_widget = QWidget()
phones_layout = QVBoxLayout()
phones_layout.setSpacing(20)
phones_layout.setContentsMargins(20, 20, 20, 20)
phones_layout.setAlignment(Qt.AlignCenter)
phones_widget.setLayout(phones_layout)
# App Title
app_title_label = QLabel("Integrated Protocol Control Panel")
app_title_label.setObjectName("mainTitleLabel")
app_title_label.setAlignment(Qt.AlignCenter)
phones_layout.addWidget(app_title_label)
# Protocol info
protocol_info = QLabel("Noise XK + Codec2 (1200bps) + 4FSK")
protocol_info.setAlignment(Qt.AlignCenter)
protocol_info.setStyleSheet("font-size: 12px; color: #00A2E8;")
phones_layout.addWidget(protocol_info)
# Phone displays layout
phone_controls_layout = QHBoxLayout()
phone_controls_layout.setSpacing(20)
phone_controls_layout.setContentsMargins(10, 0, 10, 0)
phones_layout.addLayout(phone_controls_layout)
# Setup UI for phones
for phone in self.manager.phones:
phone_container_widget, phone_display_frame, phone_button, waveform_widget, sent_waveform_widget, phone_status_label, playback_button, record_button = self._create_phone_ui(
f"Phone {phone['id']+1}", lambda checked, pid=phone['id']: self.manager.phone_action(pid, self)
)
phone['button'] = phone_button
phone['waveform'] = waveform_widget
phone['sent_waveform'] = sent_waveform_widget
phone['status_label'] = phone_status_label
phone['playback_button'] = playback_button
phone['record_button'] = record_button
# Connect audio control buttons with proper closure
playback_button.clicked.connect(lambda checked, pid=phone['id']: self.toggle_playback(pid))
record_button.clicked.connect(lambda checked, pid=phone['id']: self.toggle_recording(pid))
phone_controls_layout.addWidget(phone_container_widget)
# Connect data_received signal - it emits (data, client_id)
phone['client'].data_received.connect(lambda data, cid: self.manager.update_waveform(cid, data))
phone['client'].state_changed.connect(lambda state, num, cid=phone['id']: self.set_phone_state(cid, state, num))
phone['client'].start()
# Control buttons layout
control_layout = QHBoxLayout()
control_layout.setSpacing(15)
control_layout.setContentsMargins(20, 10, 20, 10)
# Auto Test Button
self.auto_test_button = QPushButton("🧪 Run Automatic Test")
self.auto_test_button.setObjectName("autoTestButton")
self.auto_test_button.setMinimumWidth(180)
self.auto_test_button.setMaximumWidth(250)
self.auto_test_button.clicked.connect(self.toggle_auto_test)
control_layout.addWidget(self.auto_test_button)
# Clear Debug Button
self.clear_debug_button = QPushButton("Clear Debug")
self.clear_debug_button.setMinimumWidth(100)
self.clear_debug_button.setMaximumWidth(150)
self.clear_debug_button.clicked.connect(self.clear_debug)
control_layout.addWidget(self.clear_debug_button)
# Audio Processing Button
self.audio_menu_button = QPushButton("Audio Options")
self.audio_menu_button.setMinimumWidth(100)
self.audio_menu_button.setMaximumWidth(150)
self.audio_menu_button.clicked.connect(self.show_audio_menu)
control_layout.addWidget(self.audio_menu_button)
# Settings Button
self.settings_button = QPushButton("Settings")
self.settings_button.setObjectName("settingsButton")
self.settings_button.setMinimumWidth(100)
self.settings_button.setMaximumWidth(150)
self.settings_button.setIcon(self.style().standardIcon(QStyle.SP_FileDialogDetailedView))
self.settings_button.setIconSize(QSize(20, 20))
self.settings_button.clicked.connect(self.settings_action)
control_layout.addWidget(self.settings_button)
phones_layout.addLayout(control_layout)
# Add phones widget to splitter
self.splitter.addWidget(phones_widget)
# Debug console
self.debug_console = QTextEdit()
self.debug_console.setObjectName("debugConsole")
self.debug_console.setReadOnly(True)
self.debug_console.setMinimumHeight(200)
self.debug_console.setMaximumHeight(400)
self.splitter.addWidget(self.debug_console)
# Flush any queued debug messages
if hasattr(self, '_debug_queue'):
for msg in self._debug_queue:
self.debug_console.append(msg)
del self._debug_queue
# Set splitter sizes (70% phones, 30% debug)
self.splitter.setSizes([600, 300])
# Initialize UI
for phone in self.manager.phones:
self.update_phone_ui(phone['id'])
# Initial debug message
QTimer.singleShot(100, lambda: self.debug("DryBox UI initialized with integrated protocol"))
# Setup keyboard shortcuts
self.setup_shortcuts()
def _create_phone_ui(self, title, action_slot):
phone_container_widget = QWidget()
phone_container_widget.setObjectName("phoneWidget")
phone_container_widget.setSizePolicy(QSizePolicy.Preferred, QSizePolicy.Preferred)
phone_layout = QVBoxLayout()
phone_layout.setAlignment(Qt.AlignCenter)
phone_layout.setSpacing(10)
phone_layout.setContentsMargins(15, 15, 15, 15)
phone_container_widget.setLayout(phone_layout)
phone_title_label = QLabel(title)
phone_title_label.setObjectName("phoneTitleLabel")
phone_title_label.setAlignment(Qt.AlignCenter)
phone_layout.addWidget(phone_title_label)
phone_display_frame = QFrame()
phone_display_frame.setObjectName("phoneDisplay")
phone_display_frame.setMinimumSize(200, 250)
phone_display_frame.setMaximumSize(300, 400)
phone_display_frame.setSizePolicy(QSizePolicy.Preferred, QSizePolicy.Preferred)
display_content_layout = QVBoxLayout(phone_display_frame)
display_content_layout.setAlignment(Qt.AlignCenter)
phone_status_label = QLabel("Idle")
phone_status_label.setAlignment(Qt.AlignCenter)
phone_status_label.setFont(QFont("Arial", 16))
display_content_layout.addWidget(phone_status_label)
phone_layout.addWidget(phone_display_frame, alignment=Qt.AlignCenter)
phone_button = QPushButton()
phone_button.setMinimumWidth(100)
phone_button.setMaximumWidth(150)
phone_button.setIconSize(QSize(20, 20))
phone_button.clicked.connect(action_slot)
phone_layout.addWidget(phone_button, alignment=Qt.AlignCenter)
# Received waveform
waveform_label = QLabel(f"{title} Received")
waveform_label.setAlignment(Qt.AlignCenter)
waveform_label.setStyleSheet("font-size: 12px; color: #E0E0E0;")
phone_layout.addWidget(waveform_label)
waveform_widget = WaveformWidget(dynamic=False)
waveform_widget.setMinimumSize(200, 50)
waveform_widget.setMaximumSize(300, 80)
waveform_widget.setSizePolicy(QSizePolicy.Preferred, QSizePolicy.Fixed)
phone_layout.addWidget(waveform_widget, alignment=Qt.AlignCenter)
# Sent waveform
sent_waveform_label = QLabel(f"{title} Sent")
sent_waveform_label.setAlignment(Qt.AlignCenter)
sent_waveform_label.setStyleSheet("font-size: 12px; color: #E0E0E0;")
phone_layout.addWidget(sent_waveform_label)
sent_waveform_widget = WaveformWidget(dynamic=False)
sent_waveform_widget.setMinimumSize(200, 50)
sent_waveform_widget.setMaximumSize(300, 80)
sent_waveform_widget.setSizePolicy(QSizePolicy.Preferred, QSizePolicy.Fixed)
phone_layout.addWidget(sent_waveform_widget, alignment=Qt.AlignCenter)
# Audio control buttons
audio_controls_layout = QHBoxLayout()
audio_controls_layout.setAlignment(Qt.AlignCenter)
playback_button = QPushButton("🔊 Playback")
playback_button.setCheckable(True)
playback_button.setMinimumWidth(90)
playback_button.setMaximumWidth(120)
playback_button.setStyleSheet("""
QPushButton {
background-color: #404040;
color: white;
border: 1px solid #606060;
padding: 5px;
border-radius: 3px;
}
QPushButton:checked {
background-color: #4CAF50;
}
QPushButton:hover {
background-color: #505050;
}
""")
record_button = QPushButton("⏺ Record")
record_button.setCheckable(True)
record_button.setMinimumWidth(90)
record_button.setMaximumWidth(120)
record_button.setStyleSheet("""
QPushButton {
background-color: #404040;
color: white;
border: 1px solid #606060;
padding: 5px;
border-radius: 3px;
}
QPushButton:checked {
background-color: #F44336;
}
QPushButton:hover {
background-color: #505050;
}
""")
audio_controls_layout.addWidget(playback_button)
audio_controls_layout.addWidget(record_button)
phone_layout.addLayout(audio_controls_layout)
return phone_container_widget, phone_display_frame, phone_button, waveform_widget, sent_waveform_widget, phone_status_label, playback_button, record_button
def update_phone_ui(self, phone_id):
phone = self.manager.phones[phone_id]
other_phone = self.manager.phones[1 - phone_id]
state = phone['state']
phone_number = other_phone['number'] if state != PhoneState.IDLE else ""
button = phone['button']
status_label = phone['status_label']
if state == PhoneState.IDLE:
button.setText("Call")
button.setIcon(self.style().standardIcon(QStyle.SP_MediaPlay))
status_label.setText("Idle")
button.setStyleSheet("background-color: #0078D4;")
elif state == PhoneState.CALLING:
button.setText("Cancel")
button.setIcon(self.style().standardIcon(QStyle.SP_MediaStop))
status_label.setText(f"Calling {phone_number}...")
button.setStyleSheet("background-color: #E81123;")
elif state == PhoneState.IN_CALL:
button.setText("Hang Up")
button.setIcon(self.style().standardIcon(QStyle.SP_DialogCancelButton))
status_label.setText(f"In Call with {phone_number}")
button.setStyleSheet("background-color: #E81123;")
elif state == PhoneState.RINGING:
button.setText("Answer")
button.setIcon(self.style().standardIcon(QStyle.SP_DialogApplyButton))
status_label.setText(f"Incoming Call from {phone_number}")
button.setStyleSheet("background-color: #107C10;")
def set_phone_state(self, client_id, state_str, number):
self.debug(f"Phone {client_id + 1} state change: {state_str}")
# Handle protocol-specific states
if state_str == "HANDSHAKE_COMPLETE":
phone = self.manager.phones[client_id]
phone['status_label'].setText("🔒 Secure Channel Established")
self.debug(f"Phone {client_id + 1} secure channel established")
self.manager.start_audio(client_id, parent=self)
return
elif state_str == "VOICE_START":
phone = self.manager.phones[client_id]
phone['status_label'].setText("🎤 Voice Active (Encrypted)")
self.debug(f"Phone {client_id + 1} voice session started")
return
elif state_str == "VOICE_END":
phone = self.manager.phones[client_id]
phone['status_label'].setText("🔒 Secure Channel")
self.debug(f"Phone {client_id + 1} voice session ended")
return
# Handle regular states
state = self.manager.map_state(state_str)
phone = self.manager.phones[client_id]
other_phone = self.manager.phones[1 - client_id]
self.debug(f"Setting state for Phone {client_id + 1}: {state.name if hasattr(state, 'name') else state}, number: {number}, is_initiator: {phone['is_initiator']}")
phone['state'] = state
if state == PhoneState.IN_CALL:
self.debug(f"Phone {client_id + 1} confirmed in IN_CALL state")
self.debug(f" state_str={state_str}, number={number}")
self.debug(f" is_initiator={phone['is_initiator']}")
# Only start handshake when the initiator RECEIVES the IN_CALL message
if state_str == "IN_CALL" and phone['is_initiator']:
self.debug(f"Phone {client_id + 1} (initiator) received IN_CALL, starting handshake")
phone['client'].start_handshake(initiator=True, keypair=phone['keypair'], peer_pubkey=other_phone['public_key'])
elif number == "HANDSHAKE":
# Old text-based handshake trigger - no longer used
self.debug(f"Phone {client_id + 1} received legacy HANDSHAKE message")
elif number == "HANDSHAKE_DONE":
self.debug(f"Phone {client_id + 1} received HANDSHAKE_DONE")
# Handled by HANDSHAKE_COMPLETE now
pass
self.update_phone_ui(client_id)
def settings_action(self):
print("Settings clicked")
self.debug("Settings clicked")
def debug(self, message):
"""Thread-safe debug logging to both console and UI"""
timestamp = time.strftime("%H:%M:%S.%f")[:-3]
debug_msg = f"[{timestamp}] {message}"
print(debug_msg) # Console output
self.debug_signal.emit(debug_msg) # UI output
def append_debug(self, message):
"""Append debug message to console (called from main thread)"""
if hasattr(self, 'debug_console'):
self.debug_console.append(message)
# Auto-scroll to bottom
cursor = self.debug_console.textCursor()
cursor.movePosition(QTextCursor.End)
self.debug_console.setTextCursor(cursor)
else:
# Queue messages until console is ready
if not hasattr(self, '_debug_queue'):
self._debug_queue = []
self._debug_queue.append(message)
def clear_debug(self):
"""Clear debug console"""
self.debug_console.clear()
self.debug("Debug console cleared")
def toggle_auto_test(self):
"""Toggle automatic test sequence"""
if not self.auto_test_running:
self.start_auto_test()
else:
self.stop_auto_test()
def start_auto_test(self):
"""Start automatic test sequence"""
self.auto_test_running = True
self.auto_test_button.setText("⏹ Stop Test")
self.test_step = 0
self.debug("=== STARTING AUTOMATIC TEST SEQUENCE ===")
self.debug("Test will go through complete protocol flow")
# Start test timer
self.auto_test_timer = QTimer()
self.auto_test_timer.timeout.connect(self.execute_test_step)
self.auto_test_timer.start(2000) # 2 second intervals
# Execute first step immediately
self.execute_test_step()
def stop_auto_test(self):
"""Stop automatic test sequence"""
self.auto_test_running = False
self.auto_test_button.setText("🧪 Run Automatic Test")
if self.auto_test_timer:
self.auto_test_timer.stop()
self.auto_test_timer = None
self.debug("=== TEST SEQUENCE STOPPED ===")
def execute_test_step(self):
"""Execute next step in test sequence"""
phone1 = self.manager.phones[0]
phone2 = self.manager.phones[1]
self.debug(f"\n--- Test Step {self.test_step + 1} ---")
if self.test_step == 0:
# Step 1: Check initial state
self.debug("Checking initial state...")
state1 = phone1['state']
state2 = phone2['state']
# Handle both enum and int states
state1_name = state1.name if hasattr(state1, 'name') else str(state1)
state2_name = state2.name if hasattr(state2, 'name') else str(state2)
self.debug(f"Phone 1 state: {state1_name}")
self.debug(f"Phone 2 state: {state2_name}")
self.debug(f"Phone 1 connected: {phone1['client'].sock is not None}")
self.debug(f"Phone 2 connected: {phone2['client'].sock is not None}")
elif self.test_step == 1:
# Step 2: Make call
self.debug("Phone 1 calling Phone 2...")
self.manager.phone_action(0, self)
state1_name = phone1['state'].name if hasattr(phone1['state'], 'name') else str(phone1['state'])
state2_name = phone2['state'].name if hasattr(phone2['state'], 'name') else str(phone2['state'])
self.debug(f"Phone 1 state after call: {state1_name}")
self.debug(f"Phone 2 state after call: {state2_name}")
elif self.test_step == 2:
# Step 3: Answer call
self.debug("Phone 2 answering call...")
self.manager.phone_action(1, self)
state1_name = phone1['state'].name if hasattr(phone1['state'], 'name') else str(phone1['state'])
state2_name = phone2['state'].name if hasattr(phone2['state'], 'name') else str(phone2['state'])
self.debug(f"Phone 1 state after answer: {state1_name}")
self.debug(f"Phone 2 state after answer: {state2_name}")
self.debug(f"Phone 1 is_initiator: {phone1['is_initiator']}")
self.debug(f"Phone 2 is_initiator: {phone2['is_initiator']}")
elif self.test_step == 3:
# Step 4: Check handshake progress
self.debug("Checking handshake progress...")
self.debug(f"Phone 1 handshake in progress: {phone1['client'].state.handshake_in_progress}")
self.debug(f"Phone 2 handshake in progress: {phone2['client'].state.handshake_in_progress}")
self.debug(f"Phone 1 command queue: {phone1['client'].state.command_queue.qsize()}")
self.debug(f"Phone 2 command queue: {phone2['client'].state.command_queue.qsize()}")
# Increase timer interval for handshake
self.auto_test_timer.setInterval(3000) # 3 seconds
elif self.test_step == 4:
# Step 5: Check handshake status
self.debug("Checking Noise XK handshake status...")
self.debug(f"Phone 1 handshake complete: {phone1['client'].handshake_complete}")
self.debug(f"Phone 2 handshake complete: {phone2['client'].handshake_complete}")
self.debug(f"Phone 1 has session: {phone1['client'].noise_session is not None}")
self.debug(f"Phone 2 has session: {phone2['client'].noise_session is not None}")
# Reset timer interval
self.auto_test_timer.setInterval(2000)
elif self.test_step == 5:
# Step 6: Check voice status
self.debug("Checking voice session status...")
self.debug(f"Phone 1 voice active: {phone1['client'].voice_active}")
self.debug(f"Phone 2 voice active: {phone2['client'].voice_active}")
self.debug(f"Phone 1 codec initialized: {phone1['client'].codec is not None}")
self.debug(f"Phone 2 codec initialized: {phone2['client'].codec is not None}")
self.debug(f"Phone 1 modem initialized: {phone1['client'].modem is not None}")
self.debug(f"Phone 2 modem initialized: {phone2['client'].modem is not None}")
elif self.test_step == 6:
# Step 7: Check audio transmission
self.debug("Checking audio transmission...")
self.debug(f"Phone 1 audio file loaded: {phone1['audio_file'] is not None}")
self.debug(f"Phone 2 audio file loaded: {phone2['audio_file'] is not None}")
self.debug(f"Phone 1 frame counter: {phone1.get('frame_counter', 0)}")
self.debug(f"Phone 2 frame counter: {phone2.get('frame_counter', 0)}")
self.debug(f"Phone 1 audio timer active: {phone1['audio_timer'] is not None and phone1['audio_timer'].isActive()}")
self.debug(f"Phone 2 audio timer active: {phone2['audio_timer'] is not None and phone2['audio_timer'].isActive()}")
elif self.test_step == 7:
# Step 8: Protocol details
self.debug("Protocol stack details:")
if phone1['client'].codec:
self.debug(f"Codec mode: {phone1['client'].codec.mode.name}")
self.debug(f"Frame size: {phone1['client'].codec.frame_bits} bits")
self.debug(f"Frame duration: {phone1['client'].codec.frame_ms} ms")
if phone1['client'].modem:
self.debug(f"FSK frequencies: {phone1['client'].modem.frequencies}")
self.debug(f"Symbol rate: {phone1['client'].modem.baud_rate} baud")
elif self.test_step == 8:
# Step 9: Wait for more frames
self.debug("Letting voice transmission run...")
self.auto_test_timer.setInterval(5000) # Wait 5 seconds
elif self.test_step == 9:
# Step 10: Final statistics
self.debug("Final transmission statistics:")
self.debug(f"Phone 1 frames sent: {phone1.get('frame_counter', 0)}")
self.debug(f"Phone 2 frames sent: {phone2.get('frame_counter', 0)}")
self.auto_test_timer.setInterval(2000) # Back to 2 seconds
elif self.test_step == 10:
# Step 11: Hang up
self.debug("Hanging up call...")
self.manager.phone_action(0, self)
state1_name = phone1['state'].name if hasattr(phone1['state'], 'name') else str(phone1['state'])
state2_name = phone2['state'].name if hasattr(phone2['state'], 'name') else str(phone2['state'])
self.debug(f"Phone 1 state after hangup: {state1_name}")
self.debug(f"Phone 2 state after hangup: {state2_name}")
elif self.test_step == 11:
# Complete
self.debug("\n=== TEST SEQUENCE COMPLETE ===")
self.debug("All protocol components tested successfully!")
self.stop_auto_test()
return
self.test_step += 1
def toggle_playback(self, phone_id):
"""Toggle audio playback for a phone"""
is_enabled = self.manager.toggle_playback(phone_id)
phone = self.manager.phones[phone_id]
phone['playback_button'].setChecked(is_enabled)
if is_enabled:
self.debug(f"Phone {phone_id + 1}: Audio playback enabled")
else:
self.debug(f"Phone {phone_id + 1}: Audio playback disabled")
def toggle_recording(self, phone_id):
"""Toggle audio recording for a phone"""
is_recording, save_path = self.manager.toggle_recording(phone_id)
phone = self.manager.phones[phone_id]
phone['record_button'].setChecked(is_recording)
if is_recording:
self.debug(f"Phone {phone_id + 1}: Recording started")
else:
if save_path:
self.debug(f"Phone {phone_id + 1}: Recording saved to {save_path}")
else:
self.debug(f"Phone {phone_id + 1}: Recording stopped (no data)")
def show_audio_menu(self):
"""Show audio processing options menu"""
menu = QMenu(self)
# Create phone selection submenu
for phone_id in range(2):
phone_menu = menu.addMenu(f"Phone {phone_id + 1}")
# Export buffer
export_action = QAction("Export Audio Buffer", self)
export_action.triggered.connect(lambda checked, pid=phone_id: self.export_audio_buffer(pid))
phone_menu.addAction(export_action)
# Clear buffer
clear_action = QAction("Clear Audio Buffer", self)
clear_action.triggered.connect(lambda checked, pid=phone_id: self.clear_audio_buffer(pid))
phone_menu.addAction(clear_action)
phone_menu.addSeparator()
# Processing options
normalize_action = QAction("Normalize Audio", self)
normalize_action.triggered.connect(lambda checked, pid=phone_id: self.process_audio(pid, "normalize"))
phone_menu.addAction(normalize_action)
gain_action = QAction("Apply Gain...", self)
gain_action.triggered.connect(lambda checked, pid=phone_id: self.apply_gain_dialog(pid))
phone_menu.addAction(gain_action)
noise_gate_action = QAction("Apply Noise Gate", self)
noise_gate_action.triggered.connect(lambda checked, pid=phone_id: self.process_audio(pid, "noise_gate"))
phone_menu.addAction(noise_gate_action)
low_pass_action = QAction("Apply Low Pass Filter", self)
low_pass_action.triggered.connect(lambda checked, pid=phone_id: self.process_audio(pid, "low_pass"))
phone_menu.addAction(low_pass_action)
high_pass_action = QAction("Apply High Pass Filter", self)
high_pass_action.triggered.connect(lambda checked, pid=phone_id: self.process_audio(pid, "high_pass"))
phone_menu.addAction(high_pass_action)
remove_silence_action = QAction("Remove Silence", self)
remove_silence_action.triggered.connect(lambda checked, pid=phone_id: self.process_audio(pid, "remove_silence"))
phone_menu.addAction(remove_silence_action)
# Show menu at button position
menu.exec_(self.audio_menu_button.mapToGlobal(self.audio_menu_button.rect().bottomLeft()))
def export_audio_buffer(self, phone_id):
"""Export audio buffer for a phone"""
save_path = self.manager.export_buffered_audio(phone_id)
if save_path:
self.debug(f"Phone {phone_id + 1}: Audio buffer exported to {save_path}")
else:
self.debug(f"Phone {phone_id + 1}: No audio data to export")
def clear_audio_buffer(self, phone_id):
"""Clear audio buffer for a phone"""
self.manager.clear_audio_buffer(phone_id)
def process_audio(self, phone_id, processing_type):
"""Process audio with specified type"""
save_path = self.manager.process_audio(phone_id, processing_type)
if save_path:
self.debug(f"Phone {phone_id + 1}: Processed audio saved to {save_path}")
else:
self.debug(f"Phone {phone_id + 1}: Audio processing failed")
def apply_gain_dialog(self, phone_id):
"""Show dialog to get gain value"""
gain, ok = QInputDialog.getDouble(
self, "Apply Gain", "Enter gain in dB:",
0.0, -20.0, 20.0, 1
)
if ok:
save_path = self.manager.process_audio(phone_id, "gain", gain_db=gain)
if save_path:
self.debug(f"Phone {phone_id + 1}: Applied {gain}dB gain, saved to {save_path}")
def setup_shortcuts(self):
"""Setup keyboard shortcuts"""
# Phone 1 shortcuts
QShortcut(QKeySequence("1"), self, lambda: self.manager.phone_action(0, self))
QShortcut(QKeySequence("Ctrl+1"), self, lambda: self.toggle_playback(0))
QShortcut(QKeySequence("Alt+1"), self, lambda: self.toggle_recording(0))
# Phone 2 shortcuts
QShortcut(QKeySequence("2"), self, lambda: self.manager.phone_action(1, self))
QShortcut(QKeySequence("Ctrl+2"), self, lambda: self.toggle_playback(1))
QShortcut(QKeySequence("Alt+2"), self, lambda: self.toggle_recording(1))
# General shortcuts
QShortcut(QKeySequence("Space"), self, self.toggle_auto_test)
QShortcut(QKeySequence("Ctrl+L"), self, self.clear_debug)
QShortcut(QKeySequence("Ctrl+A"), self, self.show_audio_menu)
self.debug("Keyboard shortcuts enabled:")
self.debug(" 1/2: Phone action (call/answer/hangup)")
self.debug(" Ctrl+1/2: Toggle playback")
self.debug(" Alt+1/2: Toggle recording")
self.debug(" Space: Toggle auto test")
self.debug(" Ctrl+L: Clear debug")
self.debug(" Ctrl+A: Audio options menu")
def closeEvent(self, event):
if self.auto_test_running:
self.stop_auto_test()
# Clean up audio player
if hasattr(self.manager, 'audio_player'):
self.manager.audio_player.cleanup()
for phone in self.manager.phones:
phone['client'].stop()
event.accept()
if __name__ == "__main__":
app = QApplication(sys.argv)
window = PhoneUI()
window.show()
sys.exit(app.exec_())

View File

@ -0,0 +1,127 @@
"""Wrapper for Noise XK handshake over GSM simulator"""
import struct
from dissononce.processing.impl.handshakestate import HandshakeState
from dissononce.processing.impl.symmetricstate import SymmetricState
from dissononce.processing.impl.cipherstate import CipherState
from dissononce.processing.handshakepatterns.interactive.XK import XKHandshakePattern
from dissononce.cipher.chachapoly import ChaChaPolyCipher
from dissononce.dh.x25519.x25519 import X25519DH
from dissononce.dh.keypair import KeyPair
from dissononce.dh.x25519.public import PublicKey
from dissononce.hash.sha256 import SHA256Hash
class NoiseXKWrapper:
"""Wrapper for Noise XK that works over message-passing instead of direct sockets"""
def __init__(self, keypair, peer_pubkey, debug_callback=None):
self.keypair = keypair
self.peer_pubkey = peer_pubkey
self.debug = debug_callback or print
# Build handshake state
cipher = ChaChaPolyCipher()
dh = X25519DH()
hshash = SHA256Hash()
symmetric = SymmetricState(CipherState(cipher), hshash)
self._hs = HandshakeState(symmetric, dh)
self._send_cs = None
self._recv_cs = None
self.handshake_complete = False
self.is_initiator = None # Track initiator status
# Message buffers
self.outgoing_messages = []
self.incoming_messages = []
def start_handshake(self, initiator):
"""Start the handshake process"""
self.debug(f"Starting Noise XK handshake as {'initiator' if initiator else 'responder'}")
self.is_initiator = initiator # Store initiator status
if initiator:
# Initiator knows peer's static out-of-band
self._hs.initialize(
XKHandshakePattern(),
True,
b'',
s=self.keypair,
rs=self.peer_pubkey
)
# Generate first message
buf = bytearray()
self._hs.write_message(b'', buf)
self.outgoing_messages.append(bytes(buf))
self.debug(f"Generated handshake message 1: {len(buf)} bytes")
else:
# Responder doesn't know peer's static yet
self._hs.initialize(
XKHandshakePattern(),
False,
b'',
s=self.keypair
)
self.debug("Responder initialized, waiting for first message")
def process_handshake_message(self, data):
"""Process incoming handshake message and generate response if needed"""
self.debug(f"Processing handshake message: {len(data)} bytes")
try:
# Read the message
payload = bytearray()
cs_pair = self._hs.read_message(data, payload)
# Check if we need to send a response
if not cs_pair:
# More messages needed
buf = bytearray()
cs_pair = self._hs.write_message(b'', buf)
self.outgoing_messages.append(bytes(buf))
self.debug(f"Generated handshake response: {len(buf)} bytes")
# Check if handshake completed after writing (for initiator)
if cs_pair:
self._complete_handshake(cs_pair)
else:
# Handshake complete after reading (for responder)
self._complete_handshake(cs_pair)
except Exception as e:
self.debug(f"Handshake error: {e}")
raise
def get_next_handshake_message(self):
"""Get next outgoing handshake message"""
if self.outgoing_messages:
return self.outgoing_messages.pop(0)
return None
def encrypt(self, plaintext):
"""Encrypt a message"""
if not self.handshake_complete:
raise RuntimeError("Handshake not complete")
return self._send_cs.encrypt_with_ad(b'', plaintext)
def decrypt(self, ciphertext):
"""Decrypt a message"""
if not self.handshake_complete:
raise RuntimeError("Handshake not complete")
return self._recv_cs.decrypt_with_ad(b'', ciphertext)
def _complete_handshake(self, cs_pair):
"""Complete the handshake with the given cipher states"""
self.debug("Handshake complete, setting up cipher states")
cs0, cs1 = cs_pair
# Use stored initiator status
if self.is_initiator:
self._send_cs, self._recv_cs = cs0, cs1
self.debug("Set up cipher states as initiator")
else:
self._send_cs, self._recv_cs = cs1, cs0
self.debug("Set up cipher states as responder")
self.handshake_complete = True
self.debug("Cipher states established")

View File

@ -0,0 +1,374 @@
import secrets
from PyQt5.QtCore import QTimer
from protocol_phone_client import ProtocolPhoneClient
from session import NoiseXKSession
from phone_state import PhoneState # Added import
from audio_player import AudioPlayer
from audio_processor import AudioProcessor
import struct
import wave
import os
class PhoneManager:
def __init__(self):
self.phones = []
self.handshake_done_count = 0
self.ui = None # Will be set by UI
self.audio_player = AudioPlayer()
self.audio_player.set_debug_callback(self.debug)
self.audio_processor = AudioProcessor()
self.audio_processor.set_debug_callback(self.debug)
self.audio_buffer = {} # client_id -> list of audio chunks for processing
def debug(self, message):
"""Send debug message to UI if available"""
if self.ui and hasattr(self.ui, 'debug'):
self.ui.debug(f"[PhoneManager] {message}")
else:
print(f"[PhoneManager] {message}")
def initialize_phones(self):
for i in range(2):
client = ProtocolPhoneClient(i) # Use protocol client
client.set_debug_callback(self.debug) # Set debug callback
client.manager = self # Set manager reference for handshake lookup
keypair = NoiseXKSession.generate_keypair()
phone = {
'id': i,
'client': client,
'state': PhoneState.IDLE,
'number': "123-4567" if i == 0 else "987-6543",
'audio_timer': None,
'keypair': keypair,
'public_key': keypair.public,
'is_initiator': False,
'audio_file': None, # For test audio
'frame_counter': 0,
'playback_enabled': False,
'recording_enabled': False
}
client.keypair = keypair # Also set keypair on client
self.phones.append(phone)
self.debug(f"Initialized Phone {i+1} with public key: {keypair.public.data.hex()[:32]}...")
self.phones[0]['peer_public_key'] = self.phones[1]['public_key']
self.phones[1]['peer_public_key'] = self.phones[0]['public_key']
def phone_action(self, phone_id, ui_manager):
phone = self.phones[phone_id]
other_phone = self.phones[1 - phone_id]
self.debug(f"Phone {phone_id + 1} action triggered, current state: {phone['state'].name}")
if phone['state'] == PhoneState.IDLE:
self.debug(f"Phone {phone_id + 1} initiating call to Phone {2-phone_id}")
phone['state'] = PhoneState.CALLING
other_phone['state'] = PhoneState.RINGING
phone['is_initiator'] = True
other_phone['is_initiator'] = False
phone['client'].send("RINGING")
elif phone['state'] == PhoneState.RINGING:
self.debug(f"Phone {phone_id + 1} answering call from Phone {2-phone_id}")
phone['state'] = PhoneState.IN_CALL
# Don't set other_phone state here - let it set when it receives IN_CALL
phone['client'].send("IN_CALL")
elif phone['state'] in [PhoneState.IN_CALL, PhoneState.CALLING]:
if not phone['client'].state.handshake_in_progress and phone['state'] != PhoneState.CALLING:
phone['state'] = other_phone['state'] = PhoneState.IDLE
phone['client'].send("CALL_END")
for p in [phone, other_phone]:
if p['audio_timer']:
p['audio_timer'].stop()
# End voice session
if p['client'].voice_active:
p['client'].end_voice_session()
# Close audio file
if p['audio_file']:
p['audio_file'].close()
p['audio_file'] = None
p['frame_counter'] = 0
else:
self.debug(f"Phone {phone_id + 1} cannot hang up during handshake or call setup")
ui_manager.update_phone_ui(phone_id)
ui_manager.update_phone_ui(1 - phone_id)
def send_audio(self, phone_id):
phone = self.phones[phone_id]
if phone['state'] != PhoneState.IN_CALL:
self.debug(f"Phone {phone_id + 1} not in call, stopping audio timer")
if phone['audio_timer']:
phone['audio_timer'].stop()
return
if not phone['client'].handshake_complete:
self.debug(f"Phone {phone_id + 1} handshake not complete, skipping audio send")
return
if not phone['client'].voice_active:
self.debug(f"Phone {phone_id + 1} voice not active, skipping audio send")
return
if phone['state'] == PhoneState.IN_CALL and phone['client'].handshake_complete and phone['client'].voice_active:
# Load test audio file if not loaded
if phone['audio_file'] is None:
wav_path = "../wav/input.wav"
if not os.path.exists(wav_path):
wav_path = "wav/input.wav"
if os.path.exists(wav_path):
try:
phone['audio_file'] = wave.open(wav_path, 'rb')
self.debug(f"Phone {phone_id + 1} loaded test audio file: {wav_path}")
# Verify it's 8kHz mono
if phone['audio_file'].getframerate() != 8000:
self.debug(f"Warning: {wav_path} is {phone['audio_file'].getframerate()}Hz, expected 8000Hz")
if phone['audio_file'].getnchannels() != 1:
self.debug(f"Warning: {wav_path} has {phone['audio_file'].getnchannels()} channels, expected 1")
# Skip initial silence - jump to 1 second in (8000 samples)
phone['audio_file'].setpos(8000)
self.debug(f"Phone {phone_id + 1} skipped initial silence, starting at 1 second")
except Exception as e:
self.debug(f"Phone {phone_id + 1} failed to load audio: {e}")
# Use mock audio as fallback
phone['audio_file'] = None
# Read audio frame (40ms at 8kHz = 320 samples)
if phone['audio_file']:
try:
frames = phone['audio_file'].readframes(320)
if not frames or len(frames) < 640: # 320 samples * 2 bytes
# Loop back to 1 second (skip silence)
phone['audio_file'].setpos(8000)
frames = phone['audio_file'].readframes(320)
self.debug(f"Phone {phone_id + 1} looped audio back to 1 second mark")
# Send through protocol (codec + 4FSK + encryption)
phone['client'].send_voice_frame(frames)
# Update waveform
if len(frames) >= 2:
samples = struct.unpack(f'{len(frames)//2}h', frames)
self.update_sent_waveform(phone_id, frames)
# If playback is enabled on the sender, play the original audio
if phone['playback_enabled']:
self.audio_player.add_audio_data(phone_id, frames)
if phone['frame_counter'] % 25 == 0:
self.debug(f"Phone {phone_id + 1} playing original audio (sender playback)")
phone['frame_counter'] += 1
if phone['frame_counter'] % 25 == 0: # Log every second
self.debug(f"Phone {phone_id + 1} sent {phone['frame_counter']} voice frames")
except Exception as e:
self.debug(f"Phone {phone_id + 1} audio send error: {e}")
else:
# Fallback: send mock audio
mock_audio = secrets.token_bytes(320)
phone['client'].send_voice_frame(mock_audio)
self.update_sent_waveform(phone_id, mock_audio)
def start_audio(self, client_id, parent=None):
self.handshake_done_count += 1
self.debug(f"HANDSHAKE_DONE received for client {client_id}, count: {self.handshake_done_count}")
# Start voice session for this client
phone = self.phones[client_id]
if phone['client'].handshake_complete and not phone['client'].voice_active:
phone['client'].start_voice_session()
if self.handshake_done_count == 2:
# Add a small delay to ensure both sides are ready
def start_audio_timers():
self.debug("Starting audio timers for both phones")
for phone in self.phones:
if phone['state'] == PhoneState.IN_CALL:
if not phone['audio_timer'] or not phone['audio_timer'].isActive():
phone['audio_timer'] = QTimer(parent) # Parent to PhoneUI
phone['audio_timer'].timeout.connect(lambda pid=phone['id']: self.send_audio(pid))
phone['audio_timer'].start(40) # 40ms for each voice frame
# Delay audio start by 500ms to ensure both sides are ready
QTimer.singleShot(500, start_audio_timers)
self.handshake_done_count = 0
def update_waveform(self, client_id, data):
# Only process actual audio data (should be 640 bytes for 320 samples * 2 bytes)
# Ignore small control messages
if len(data) < 320: # Less than 160 samples (too small for audio)
self.debug(f"Phone {client_id + 1} received non-audio data: {len(data)} bytes (ignoring)")
return
self.phones[client_id]['waveform'].set_data(data)
# Debug log audio data reception (only occasionally to avoid spam)
if not hasattr(self, '_audio_frame_count'):
self._audio_frame_count = {}
if client_id not in self._audio_frame_count:
self._audio_frame_count[client_id] = 0
self._audio_frame_count[client_id] += 1
if self._audio_frame_count[client_id] == 1 or self._audio_frame_count[client_id] % 25 == 0:
self.debug(f"Phone {client_id + 1} received audio frame #{self._audio_frame_count[client_id]}: {len(data)} bytes")
# Store audio data in buffer for potential processing
if client_id not in self.audio_buffer:
self.audio_buffer[client_id] = []
self.audio_buffer[client_id].append(data)
# Keep buffer size reasonable (last 30 seconds at 8kHz)
max_chunks = 30 * 25 # 30 seconds * 25 chunks/second
if len(self.audio_buffer[client_id]) > max_chunks:
self.audio_buffer[client_id] = self.audio_buffer[client_id][-max_chunks:]
# Forward audio data to player if playback is enabled
if self.phones[client_id]['playback_enabled']:
if self._audio_frame_count[client_id] == 1:
self.debug(f"Phone {client_id + 1} forwarding audio to player (playback enabled)")
self.audio_player.add_audio_data(client_id, data)
def update_sent_waveform(self, client_id, data):
self.phones[client_id]['sent_waveform'].set_data(data)
def toggle_playback(self, client_id):
"""Toggle audio playback for a phone"""
phone = self.phones[client_id]
if phone['playback_enabled']:
# Stop playback
self.audio_player.stop_playback(client_id)
phone['playback_enabled'] = False
self.debug(f"Phone {client_id + 1} playback stopped")
else:
# Start playback
if self.audio_player.start_playback(client_id):
phone['playback_enabled'] = True
self.debug(f"Phone {client_id + 1} playback started")
# Removed test beep - we want to hear actual audio
else:
self.debug(f"Phone {client_id + 1} failed to start playback")
return phone['playback_enabled']
def toggle_recording(self, client_id):
"""Toggle audio recording for a phone"""
phone = self.phones[client_id]
if phone['recording_enabled']:
# Stop recording and save
save_path = self.audio_player.stop_recording(client_id)
phone['recording_enabled'] = False
if save_path:
self.debug(f"Phone {client_id + 1} recording saved to {save_path}")
return False, save_path
else:
# Start recording
self.audio_player.start_recording(client_id)
phone['recording_enabled'] = True
self.debug(f"Phone {client_id + 1} recording started")
return True, None
def save_received_audio(self, client_id, filename=None):
"""Save the last received audio to a file"""
if client_id not in self.phones:
return None
save_path = self.audio_player.stop_recording(client_id, filename)
if save_path:
self.debug(f"Phone {client_id + 1} audio saved to {save_path}")
return save_path
def process_audio(self, client_id, processing_type, **kwargs):
"""Process buffered audio with specified processing type"""
if client_id not in self.audio_buffer or not self.audio_buffer[client_id]:
self.debug(f"No audio data available for Phone {client_id + 1}")
return None
# Combine all audio chunks
combined_audio = b''.join(self.audio_buffer[client_id])
# Apply processing based on type
processed_audio = combined_audio
if processing_type == "normalize":
target_db = kwargs.get('target_db', -3)
processed_audio = self.audio_processor.normalize_audio(combined_audio, target_db)
elif processing_type == "gain":
gain_db = kwargs.get('gain_db', 0)
processed_audio = self.audio_processor.apply_gain(combined_audio, gain_db)
elif processing_type == "noise_gate":
threshold_db = kwargs.get('threshold_db', -40)
processed_audio = self.audio_processor.apply_noise_gate(combined_audio, threshold_db)
elif processing_type == "low_pass":
cutoff_hz = kwargs.get('cutoff_hz', 3400)
processed_audio = self.audio_processor.apply_low_pass_filter(combined_audio, cutoff_hz)
elif processing_type == "high_pass":
cutoff_hz = kwargs.get('cutoff_hz', 300)
processed_audio = self.audio_processor.apply_high_pass_filter(combined_audio, cutoff_hz)
elif processing_type == "remove_silence":
threshold_db = kwargs.get('threshold_db', -40)
processed_audio = self.audio_processor.remove_silence(combined_audio, threshold_db)
# Save processed audio
save_path = f"wav/phone{client_id + 1}_received.wav"
processed_path = self.audio_processor.save_processed_audio(
processed_audio, save_path, processing_type
)
return processed_path
def export_buffered_audio(self, client_id, filename=None):
"""Export current audio buffer to file"""
if client_id not in self.audio_buffer or not self.audio_buffer[client_id]:
self.debug(f"No audio data available for Phone {client_id + 1}")
return None
# Combine all audio chunks
combined_audio = b''.join(self.audio_buffer[client_id])
# Generate filename if not provided
if not filename:
from datetime import datetime
timestamp = datetime.now().strftime("%Y%m%d_%H%M%S")
filename = f"wav/phone{client_id + 1}_buffer_{timestamp}.wav"
# Ensure directory exists
os.makedirs(os.path.dirname(filename), exist_ok=True)
try:
with wave.open(filename, 'wb') as wav_file:
wav_file.setnchannels(1)
wav_file.setsampwidth(2)
wav_file.setframerate(8000)
wav_file.writeframes(combined_audio)
self.debug(f"Exported audio buffer for Phone {client_id + 1} to {filename}")
return filename
except Exception as e:
self.debug(f"Failed to export audio buffer: {e}")
return None
def clear_audio_buffer(self, client_id):
"""Clear audio buffer for a phone"""
if client_id in self.audio_buffer:
self.audio_buffer[client_id] = []
self.debug(f"Cleared audio buffer for Phone {client_id + 1}")
def map_state(self, state_str):
if state_str == "RINGING":
return PhoneState.RINGING
elif state_str in ["CALL_END", "CALL_DROPPED"]:
return PhoneState.IDLE
elif state_str == "IN_CALL":
return PhoneState.IN_CALL
elif state_str == "HANDSHAKE":
return PhoneState.IN_CALL
elif state_str == "HANDSHAKE_DONE":
return PhoneState.IN_CALL
return PhoneState.IDLE

View File

@ -0,0 +1,7 @@
from enum import Enum
class PhoneState(Enum):
IDLE = 0
CALLING = 1
IN_CALL = 2
RINGING = 3

View File

@ -0,0 +1,133 @@
# protocol_client_state.py
from queue import Queue
from session import NoiseXKSession
import time
class ProtocolClientState:
"""Enhanced client state for integrated protocol with voice codec"""
def __init__(self, client_id):
self.client_id = client_id
self.command_queue = Queue()
self.initiator = None
self.keypair = None
self.peer_pubkey = None
self.session = None
self.handshake_in_progress = False
self.handshake_start_time = None
self.call_active = False
self.voice_active = False
self.debug_callback = None
def debug(self, message):
"""Send debug message"""
if self.debug_callback:
self.debug_callback(f"[State{self.client_id+1}] {message}")
else:
print(f"[State{self.client_id+1}] {message}")
def process_command(self, client):
"""Process commands from the queue."""
if not self.command_queue.empty():
self.debug(f"Processing command queue, size: {self.command_queue.qsize()}")
command = self.command_queue.get()
self.debug(f"Processing command: {command}")
if command == "handshake":
# Handshake is now handled by the wrapper in the client
self.debug(f"Handshake command processed")
self.handshake_in_progress = False
self.handshake_start_time = None
elif command == "start_voice":
if client.handshake_complete:
client.start_voice_session()
self.voice_active = True
elif command == "end_voice":
if self.voice_active:
client.end_voice_session()
self.voice_active = False
def start_handshake(self, initiator, keypair, peer_pubkey):
"""Queue handshake command."""
self.initiator = initiator
self.keypair = keypair
self.peer_pubkey = peer_pubkey
self.debug(f"Queuing handshake, initiator: {initiator}")
self.handshake_in_progress = True
self.handshake_start_time = time.time()
self.command_queue.put("handshake")
def handle_data(self, client, data):
"""Handle received data (control or audio)."""
try:
# Try to decode as text first
decoded_data = data.decode('utf-8').strip()
self.debug(f"Received raw: {decoded_data}")
# Handle control messages
if decoded_data in ["RINGING", "CALL_END", "CALL_DROPPED", "IN_CALL", "HANDSHAKE", "HANDSHAKE_DONE"]:
self.debug(f"Emitting state change: {decoded_data}")
# Log which client is receiving what
self.debug(f"Client {self.client_id} received {decoded_data} message")
client.state_changed.emit(decoded_data, decoded_data, self.client_id)
if decoded_data == "IN_CALL":
self.debug(f"Received IN_CALL, setting call_active = True")
self.call_active = True
elif decoded_data == "HANDSHAKE":
self.debug(f"Received HANDSHAKE, setting handshake_in_progress = True")
self.handshake_in_progress = True
elif decoded_data == "HANDSHAKE_DONE":
self.debug(f"Received HANDSHAKE_DONE from peer")
self.call_active = True
# Start voice session on this side too
if client.handshake_complete and not client.voice_active:
self.debug(f"Starting voice session after receiving HANDSHAKE_DONE")
self.command_queue.put("start_voice")
elif decoded_data in ["CALL_END", "CALL_DROPPED"]:
self.debug(f"Received {decoded_data}, ending call")
self.call_active = False
if self.voice_active:
self.command_queue.put("end_voice")
else:
self.debug(f"Ignored unexpected text message: {decoded_data}")
except UnicodeDecodeError:
# Handle binary data (protocol messages or encrypted data)
if len(data) > 0 and data[0] == 0x20 and not client.handshake_complete: # Noise handshake message only before handshake completes
self.debug(f"Received Noise handshake message")
# Initialize responder if not already done
if not client.handshake_initiated:
# Find the other phone's public key
# This is a bit hacky but works for our 2-phone setup
manager = getattr(client, 'manager', None)
if manager:
other_phone = manager.phones[1 - self.client_id]
client.start_handshake(initiator=False,
keypair=client.keypair or manager.phones[self.client_id]['keypair'],
peer_pubkey=other_phone['public_key'])
# Pass to protocol handler
client._handle_protocol_message(data)
elif client.handshake_complete and client.noise_wrapper:
# Pass encrypted data back to client for decryption
client._handle_encrypted_data(data)
else:
# Pass other binary messages to protocol handler only if not yet complete
if not client.handshake_complete:
client._handle_protocol_message(data)
def check_handshake_timeout(self, client):
"""Check for handshake timeout."""
if self.handshake_in_progress and self.handshake_start_time:
if time.time() - self.handshake_start_time > 30:
self.debug(f"Handshake timeout after 30s")
client.state_changed.emit("CALL_END", "", self.client_id)
self.handshake_in_progress = False
self.handshake_start_time = None
def queue_voice_command(self, command):
"""Queue voice-related commands"""
if command in ["start_voice", "end_voice"]:
self.command_queue.put(command)

View File

@ -0,0 +1,456 @@
import socket
import time
import select
import struct
import array
from PyQt5.QtCore import QThread, pyqtSignal
from protocol_client_state import ProtocolClientState
from session import NoiseXKSession
from noise_wrapper import NoiseXKWrapper
from dissononce.dh.keypair import KeyPair
from dissononce.dh.x25519.public import PublicKey
import sys
import os
sys.path.append(os.path.dirname(os.path.dirname(os.path.abspath(__file__))))
from voice_codec import Codec2Wrapper, FSKModem, Codec2Mode
# ChaCha20 removed - using only Noise XK encryption
class ProtocolPhoneClient(QThread):
"""Integrated phone client with Noise XK, Codec2, 4FSK, and ChaCha20"""
data_received = pyqtSignal(bytes, int)
state_changed = pyqtSignal(str, str, int)
def __init__(self, client_id):
super().__init__()
self.host = "localhost"
self.port = 12345
self.client_id = client_id
self.sock = None
self.running = True
self.state = ProtocolClientState(client_id)
# Noise XK session
self.noise_session = None
self.noise_wrapper = None
self.handshake_complete = False
self.handshake_initiated = False
# No buffer needed with larger frame size
# Voice codec components
self.codec = Codec2Wrapper(mode=Codec2Mode.MODE_1200)
self.modem = FSKModem()
# Voice encryption handled by Noise XK
# No separate voice key needed
# Voice state
self.voice_active = False
self.voice_frame_counter = 0
# Message buffer for fragmented messages
self.recv_buffer = bytearray()
# Debug callback
self.debug_callback = None
def set_debug_callback(self, callback):
"""Set debug callback function"""
self.debug_callback = callback
self.state.debug_callback = callback
def debug(self, message):
"""Send debug message"""
if self.debug_callback:
self.debug_callback(f"[Phone{self.client_id+1}] {message}")
else:
print(f"[Phone{self.client_id+1}] {message}")
def connect_socket(self):
retries = 3
for attempt in range(retries):
try:
self.sock = socket.socket(socket.AF_INET, socket.SOCK_STREAM)
self.sock.setsockopt(socket.SOL_SOCKET, socket.SO_KEEPALIVE, 1)
self.sock.settimeout(120)
self.sock.connect((self.host, self.port))
self.debug(f"Connected to GSM simulator at {self.host}:{self.port}")
return True
except Exception as e:
self.debug(f"Connection attempt {attempt + 1} failed: {e}")
if attempt < retries - 1:
time.sleep(1)
self.sock = None
return False
def run(self):
while self.running:
if not self.sock:
if not self.connect_socket():
self.debug("Failed to connect after retries")
self.state_changed.emit("CALL_END", "", self.client_id)
break
try:
while self.running:
self.state.process_command(self)
self.state.check_handshake_timeout(self)
if self.handshake_complete and self.voice_active:
# Process voice data if active
self._process_voice_data()
# Always check for incoming data, even during handshake
if self.sock is None:
break
readable, _, _ = select.select([self.sock], [], [], 0.01)
if readable:
try:
if self.sock is None:
break
chunk = self.sock.recv(4096)
if not chunk:
self.debug("Disconnected from server")
self.state_changed.emit("CALL_END", "", self.client_id)
break
# Add to buffer
self.recv_buffer.extend(chunk)
# Process complete messages
while len(self.recv_buffer) >= 4:
# Read message length
msg_len = struct.unpack('>I', self.recv_buffer[:4])[0]
# Check if we have the complete message
if len(self.recv_buffer) >= 4 + msg_len:
# Extract message
data = bytes(self.recv_buffer[4:4+msg_len])
# Remove from buffer
self.recv_buffer = self.recv_buffer[4+msg_len:]
# Pass to state handler
self.state.handle_data(self, data)
else:
# Wait for more data
break
except socket.error as e:
self.debug(f"Socket error: {e}")
self.state_changed.emit("CALL_END", "", self.client_id)
break
self.msleep(1)
except Exception as e:
self.debug(f"Unexpected error in run loop: {e}")
self.state_changed.emit("CALL_END", "", self.client_id)
break
finally:
if self.sock:
try:
self.sock.close()
except Exception as e:
self.debug(f"Error closing socket: {e}")
self.sock = None
def _handle_encrypted_data(self, data):
"""Handle encrypted data after handshake"""
if not self.handshake_complete or not self.noise_wrapper:
self.debug(f"Cannot decrypt - handshake not complete")
return
# All data after handshake is encrypted, decrypt it first
try:
plaintext = self.noise_wrapper.decrypt(data)
# Check if it's a text message
try:
text_msg = plaintext.decode('utf-8').strip()
if text_msg == "HANDSHAKE_DONE":
self.debug(f"Received encrypted HANDSHAKE_DONE")
self.state_changed.emit("HANDSHAKE_DONE", "HANDSHAKE_DONE", self.client_id)
return
except:
pass
# Otherwise handle as protocol message
self._handle_protocol_message(plaintext)
except Exception as e:
# Suppress common decryption errors
pass
def _handle_protocol_message(self, plaintext):
"""Handle decrypted protocol messages"""
if len(plaintext) < 1:
return
msg_type = plaintext[0]
msg_data = plaintext[1:]
if msg_type == 0x10: # Voice start
self.debug("Received VOICE_START message")
self._handle_voice_start(msg_data)
elif msg_type == 0x11: # Voice data
self._handle_voice_data(msg_data)
elif msg_type == 0x12: # Voice end
self.debug("Received VOICE_END message")
self._handle_voice_end(msg_data)
elif msg_type == 0x20: # Noise handshake
self.debug("Received NOISE_HS message")
self._handle_noise_handshake(msg_data)
else:
self.debug(f"Received unknown protocol message type: 0x{msg_type:02x}")
# Don't emit control messages to data_received - that's only for audio
# Control messages should be handled via state_changed signal
def _handle_voice_start(self, data):
"""Handle voice session start"""
self.debug("Voice session started by peer")
self.voice_active = True
self.voice_frame_counter = 0
self.state_changed.emit("VOICE_START", "", self.client_id)
def _handle_voice_data(self, data):
"""Handle voice frame (already decrypted by Noise)"""
if len(data) < 4:
return
try:
# Data is float array packed as bytes
# Unpack the float array
num_floats = len(data) // 4
modulated_signal = struct.unpack(f'{num_floats}f', data)
# Demodulate FSK
demodulated_data, confidence = self.modem.demodulate(modulated_signal)
if confidence > 0.5: # Only decode if confidence is good
# Create Codec2Frame from demodulated data
from voice_codec import Codec2Frame, Codec2Mode
frame = Codec2Frame(
mode=Codec2Mode.MODE_1200,
bits=demodulated_data,
timestamp=time.time(),
frame_number=self.voice_frame_counter
)
# Decode with Codec2
pcm_samples = self.codec.decode(frame)
if self.voice_frame_counter == 0:
self.debug(f"First voice frame demodulated with confidence {confidence:.2f}")
# Send PCM to UI for playback
if pcm_samples is not None and len(pcm_samples) > 0:
# Only log details for first frame and every 25th frame
if self.voice_frame_counter == 0 or self.voice_frame_counter % 25 == 0:
self.debug(f"Decoded PCM samples: type={type(pcm_samples)}, len={len(pcm_samples)}")
# Convert to bytes if needed
if hasattr(pcm_samples, 'tobytes'):
pcm_bytes = pcm_samples.tobytes()
elif isinstance(pcm_samples, (list, array.array)):
# Convert array to bytes
import array
if isinstance(pcm_samples, list):
pcm_array = array.array('h', pcm_samples)
pcm_bytes = pcm_array.tobytes()
else:
pcm_bytes = pcm_samples.tobytes()
else:
pcm_bytes = bytes(pcm_samples)
if self.voice_frame_counter == 0:
self.debug(f"Emitting first PCM frame: {len(pcm_bytes)} bytes")
self.data_received.emit(pcm_bytes, self.client_id)
self.voice_frame_counter += 1
# Log frame reception periodically
if self.voice_frame_counter == 1 or self.voice_frame_counter % 25 == 0:
self.debug(f"Received voice data frame #{self.voice_frame_counter}")
else:
self.debug(f"Codec decode returned None or empty")
else:
if self.voice_frame_counter % 10 == 0:
self.debug(f"Low confidence demodulation: {confidence:.2f}")
except Exception as e:
self.debug(f"Voice decode error: {e}")
def _handle_voice_end(self, data):
"""Handle voice session end"""
self.debug("Voice session ended by peer")
self.voice_active = False
self.state_changed.emit("VOICE_END", "", self.client_id)
def _handle_noise_handshake(self, data):
"""Handle Noise handshake message"""
if not self.noise_wrapper:
self.debug("Received handshake message but no wrapper initialized")
return
try:
# Process the handshake message
self.noise_wrapper.process_handshake_message(data)
# Check if we need to send a response
response = self.noise_wrapper.get_next_handshake_message()
if response:
self.send(b'\x20' + response)
# Check if handshake is complete
if self.noise_wrapper.handshake_complete and not self.handshake_complete:
self.debug("Noise wrapper handshake complete, calling complete_handshake()")
self.complete_handshake()
except Exception as e:
self.debug(f"Handshake processing error: {e}")
self.state_changed.emit("CALL_END", "", self.client_id)
def _process_voice_data(self):
"""Process outgoing voice data"""
# This would be called when we have voice input to send
# For now, this is a placeholder
pass
def send_voice_frame(self, pcm_samples):
"""Send a voice frame through the protocol"""
if not self.handshake_complete:
self.debug("Cannot send voice - handshake not complete")
return
if not self.voice_active:
self.debug("Cannot send voice - voice session not active")
return
try:
# Encode with Codec2
codec_frame = self.codec.encode(pcm_samples)
if not codec_frame:
return
if self.voice_frame_counter % 25 == 0: # Log every 25 frames (1 second)
self.debug(f"Encoding voice frame #{self.voice_frame_counter}: {len(pcm_samples)} bytes PCM → {len(codec_frame.bits)} bytes compressed")
# Modulate with FSK
modulated_data = self.modem.modulate(codec_frame.bits)
# Convert modulated float array to bytes
modulated_bytes = struct.pack(f'{len(modulated_data)}f', *modulated_data)
if self.voice_frame_counter % 25 == 0:
self.debug(f"Voice frame size: {len(modulated_bytes)} bytes")
# Build voice data message (no ChaCha20, will be encrypted by Noise)
msg = bytes([0x11]) + modulated_bytes
# Send through Noise encrypted channel
self.send(msg)
self.voice_frame_counter += 1
except Exception as e:
self.debug(f"Voice encode error: {e}")
def send(self, message):
"""Send data through Noise encrypted channel with proper framing"""
if self.sock and self.running:
try:
# Handshake messages (0x20) bypass Noise encryption
if isinstance(message, bytes) and len(message) > 0 and message[0] == 0x20:
# Add length prefix for framing
framed = struct.pack('>I', len(message)) + message
self.sock.send(framed)
return
if self.handshake_complete and self.noise_wrapper:
# Encrypt everything with Noise after handshake
# Convert string to bytes if needed
if isinstance(message, str):
message = message.encode('utf-8')
encrypted = self.noise_wrapper.encrypt(message)
# Add length prefix for framing
framed = struct.pack('>I', len(encrypted)) + encrypted
self.sock.send(framed)
else:
# During handshake, send raw with framing
if isinstance(message, str):
data = message.encode('utf-8')
framed = struct.pack('>I', len(data)) + data
self.sock.send(framed)
self.debug(f"Sent control message: {message}")
else:
framed = struct.pack('>I', len(message)) + message
self.sock.send(framed)
except socket.error as e:
self.debug(f"Send error: {e}")
self.state_changed.emit("CALL_END", "", self.client_id)
def stop(self):
self.running = False
self.voice_active = False
if self.sock:
try:
self.sock.close()
except Exception as e:
self.debug(f"Error closing socket in stop: {e}")
self.sock = None
self.quit()
self.wait(1000)
def start_handshake(self, initiator, keypair, peer_pubkey):
"""Start Noise XK handshake"""
self.debug(f"Starting Noise XK handshake as {'initiator' if initiator else 'responder'}")
self.debug(f"Our public key: {keypair.public.data.hex()[:32]}...")
self.debug(f"Peer public key: {peer_pubkey.data.hex()[:32]}...")
# Create noise wrapper
self.noise_wrapper = NoiseXKWrapper(keypair, peer_pubkey, self.debug)
self.noise_wrapper.start_handshake(initiator)
self.handshake_initiated = True
# Send first handshake message if initiator
if initiator:
msg = self.noise_wrapper.get_next_handshake_message()
if msg:
# Send as NOISE_HS message type
self.send(b'\x20' + msg) # 0x20 = Noise handshake message
def complete_handshake(self):
"""Called when Noise handshake completes"""
self.handshake_complete = True
self.debug("Noise XK handshake complete!")
self.debug("Secure channel established")
# Send HANDSHAKE_DONE message
self.send("HANDSHAKE_DONE")
self.state_changed.emit("HANDSHAKE_COMPLETE", "", self.client_id)
def start_voice_session(self):
"""Start a voice session"""
if not self.handshake_complete:
self.debug("Cannot start voice - handshake not complete")
return
self.voice_active = True
self.voice_frame_counter = 0
# Send voice start message
msg = bytes([0x10]) # Voice start message type
self.send(msg)
self.debug("Voice session started")
self.state_changed.emit("VOICE_START", "", self.client_id)
def end_voice_session(self):
"""End a voice session"""
if not self.voice_active:
return
self.voice_active = False
# Send voice end message
msg = bytes([0x12]) # Voice end message type
self.send(msg)
self.debug("Voice session ended")
self.state_changed.emit("VOICE_END", "", self.client_id)

View File

@ -1,415 +0,0 @@
import sys
import random
import socket
import threading
import time
from PyQt5.QtWidgets import (
QApplication, QMainWindow, QWidget, QVBoxLayout, QHBoxLayout,
QPushButton, QLabel, QFrame, QSizePolicy, QStyle
)
from PyQt5.QtCore import Qt, QTimer, QSize, QPointF, pyqtSignal, QThread
from PyQt5.QtGui import QPainter, QColor, QPen, QLinearGradient, QBrush, QIcon, QFont
# --- Phone Client Thread ---
class PhoneClient(QThread):
data_received = pyqtSignal(bytes, int) # Include client_id
state_changed = pyqtSignal(str, str, int) # Include client_id
def __init__(self, host, port, client_id):
super().__init__()
self.host = host
self.port = port
self.client_id = client_id
self.sock = None
self.running = True
def run(self):
try:
self.sock = socket.socket(socket.AF_INET, socket.SOCK_STREAM)
self.sock.setsockopt(socket.SOL_SOCKET, socket.SO_KEEPALIVE, 1)
self.sock.settimeout(15)
self.sock.connect((self.host, self.port))
print(f"Client {self.client_id} connected to {self.host}:{self.port}")
while self.running:
try:
data = self.sock.recv(1024)
if not data:
print(f"Client {self.client_id} disconnected")
self.state_changed.emit("CALL_END", "", self.client_id)
break
decoded_data = data.decode('utf-8', errors='ignore').strip()
print(f"Client {self.client_id} received raw: {decoded_data}")
if decoded_data in ["RINGING", "CALL_END", "CALL_DROPPED", "IN_CALL"]:
self.state_changed.emit(decoded_data, "", self.client_id)
else:
self.data_received.emit(data, self.client_id)
print(f"Client {self.client_id} received audio: {decoded_data}")
except socket.timeout:
print(f"Client {self.client_id} timed out waiting for data")
continue
except Exception as e:
print(f"Client {self.client_id} error: {e}")
self.state_changed.emit("CALL_END", "", self.client_id)
break
except Exception as e:
print(f"Client {self.client_id} connection failed: {e}")
finally:
if self.sock:
self.sock.close()
def send(self, message):
if self.sock and self.running:
try:
self.sock.send(message.encode())
print(f"Client {self.client_id} sent: {message}")
except Exception as e:
print(f"Client {self.client_id} send error: {e}")
def stop(self):
self.running = False
if self.sock:
self.sock.close()
# --- Custom Waveform Widget ---
class WaveformWidget(QWidget):
def __init__(self, parent=None, dynamic=False):
super().__init__(parent)
self.dynamic = dynamic
self.setMinimumSize(200, 80)
self.setMaximumHeight(100)
self.waveform_data = [random.randint(10, 90) for _ in range(50)]
if self.dynamic:
self.timer = QTimer(self)
self.timer.timeout.connect(self.update_waveform)
self.timer.start(100)
def update_waveform(self):
self.waveform_data = self.waveform_data[1:] + [random.randint(10, 90)]
self.update()
def set_data(self, data):
amplitude = sum(byte for byte in data) % 90 + 10
self.waveform_data = self.waveform_data[1:] + [amplitude]
self.update()
def paintEvent(self, event):
painter = QPainter(self)
painter.setRenderHint(QPainter.Antialiasing)
painter.fillRect(self.rect(), QColor("#2D2D2D"))
gradient = QLinearGradient(0, 0, 0, self.height())
gradient.setColorAt(0.0, QColor("#0078D4"))
gradient.setColorAt(1.0, QColor("#50E6A4"))
pen = QPen(QBrush(gradient), 2)
painter.setPen(pen)
bar_width = self.width() / len(self.waveform_data)
max_h = self.height() - 10
for i, val in enumerate(self.waveform_data):
bar_height = (val / 100.0) * max_h
x = i * bar_width
y = (self.height() - bar_height) / 2
painter.drawLine(QPointF(x + bar_width / 2, y), QPointF(x + bar_width / 2, y + bar_height))
def resizeEvent(self, event):
super().resizeEvent(event)
self.update()
# --- Phone State ---
class PhoneState:
IDLE = 0
CALLING = 1
IN_CALL = 2
RINGING = 3
class PhoneUI(QMainWindow):
def __init__(self):
super().__init__()
self.setWindowTitle("Enhanced Dual Phone Interface")
self.setGeometry(100, 100, 900, 750)
self.setStyleSheet("""
QMainWindow { background-color: #333333; }
QLabel { color: #E0E0E0; font-size: 14px; }
QPushButton {
background-color: #0078D4; color: white; border: none;
padding: 10px 15px; border-radius: 5px; font-size: 14px;
min-height: 30px;
}
QPushButton:hover { background-color: #005A9E; }
QPushButton:pressed { background-color: #003C6B; }
QPushButton#settingsButton { background-color: #555555; }
QPushButton#settingsButton:hover { background-color: #777777; }
QFrame#phoneDisplay {
background-color: #1E1E1E; border: 2px solid #0078D4;
border-radius: 10px;
}
QLabel#phoneTitleLabel {
font-size: 18px; font-weight: bold; padding-bottom: 5px;
color: #FFFFFF;
}
QLabel#mainTitleLabel {
font-size: 24px; font-weight: bold; color: #00A2E8;
padding: 15px;
}
QWidget#phoneWidget {
border: 1px solid #4A4A4A; border-radius: 8px;
padding: 10px; background-color: #3A3A3A;
}
""")
# Phone states
self.phone1_state = PhoneState.IDLE
self.phone2_state = PhoneState.IDLE
# Phone clients
self.phone1_client = PhoneClient("localhost", 12345, 0)
self.phone2_client = PhoneClient("localhost", 12345, 1)
self.phone1_client.data_received.connect(lambda data, cid: self.update_waveform(cid, data))
self.phone2_client.data_received.connect(lambda data, cid: self.update_waveform(cid, data))
self.phone1_client.state_changed.connect(lambda state, num, cid: self.set_phone_state(cid, self.map_state(state), num))
self.phone2_client.state_changed.connect(lambda state, num, cid: self.set_phone_state(cid, self.map_state(state), num))
self.phone1_client.start()
self.phone2_client.start()
# Main widget and layout
main_widget = QWidget()
self.setCentralWidget(main_widget)
main_layout = QVBoxLayout()
main_layout.setSpacing(20)
main_layout.setContentsMargins(20, 20, 20, 20)
main_layout.setAlignment(Qt.AlignCenter)
main_widget.setLayout(main_layout)
# App Title
app_title_label = QLabel("Dual Phone Control Panel")
app_title_label.setObjectName("mainTitleLabel")
app_title_label.setAlignment(Qt.AlignCenter)
main_layout.addWidget(app_title_label)
# Phone displays layout
phone_controls_layout = QHBoxLayout()
phone_controls_layout.setSpacing(50)
phone_controls_layout.setAlignment(Qt.AlignCenter)
main_layout.addLayout(phone_controls_layout)
# Phone 1
phone1_widget_container, self.phone1_display, self.phone1_button, self.phone1_waveform = self._create_phone_ui("Phone 1", self.phone1_action)
phone_controls_layout.addWidget(phone1_widget_container)
# Phone 2
phone2_widget_container, self.phone2_display, self.phone2_button, self.phone2_waveform = self._create_phone_ui("Phone 2", self.phone2_action)
phone_controls_layout.addWidget(phone2_widget_container)
# Spacer
main_layout.addStretch(1)
# Settings Button
self.settings_button = QPushButton("Settings")
self.settings_button.setObjectName("settingsButton")
self.settings_button.setFixedWidth(180)
self.settings_button.setIcon(self.style().standardIcon(QStyle.SP_FileDialogDetailedView))
self.settings_button.setIconSize(QSize(20, 20))
self.settings_button.clicked.connect(self.settings_action)
settings_layout = QHBoxLayout()
settings_layout.addStretch()
settings_layout.addWidget(self.settings_button)
settings_layout.addStretch()
main_layout.addLayout(settings_layout)
# Initialize button states
self._update_phone_button_ui(self.phone1_button, self.phone1_state)
self._update_phone_button_ui(self.phone2_button, self.phone2_state)
def _create_phone_ui(self, title, action_slot):
phone_container_widget = QWidget()
phone_container_widget.setObjectName("phoneWidget")
phone_layout = QVBoxLayout()
phone_layout.setAlignment(Qt.AlignCenter)
phone_layout.setSpacing(15)
phone_container_widget.setLayout(phone_layout)
phone_title_label = QLabel(title)
phone_title_label.setObjectName("phoneTitleLabel")
phone_title_label.setAlignment(Qt.AlignCenter)
phone_layout.addWidget(phone_title_label)
phone_display_frame = QFrame()
phone_display_frame.setObjectName("phoneDisplay")
phone_display_frame.setFixedSize(250, 350)
phone_display_frame.setSizePolicy(QSizePolicy.Fixed, QSizePolicy.Fixed)
display_content_layout = QVBoxLayout(phone_display_frame)
display_content_layout.setAlignment(Qt.AlignCenter)
phone_status_label = QLabel("Idle")
phone_status_label.setAlignment(Qt.AlignCenter)
phone_status_label.setFont(QFont("Arial", 16))
display_content_layout.addWidget(phone_status_label)
phone_layout.addWidget(phone_display_frame, alignment=Qt.AlignCenter)
phone_button = QPushButton()
phone_button.setFixedWidth(120)
phone_button.setIconSize(QSize(20, 20))
phone_button.clicked.connect(action_slot)
phone_layout.addWidget(phone_button, alignment=Qt.AlignCenter)
waveform_label = QLabel(f"{title} Audio")
waveform_label.setAlignment(Qt.AlignCenter)
waveform_label.setStyleSheet("font-size: 14px; color: #E0E0E0;")
phone_layout.addWidget(waveform_label)
waveform_widget = WaveformWidget(dynamic=False)
phone_layout.addWidget(waveform_widget, alignment=Qt.AlignCenter)
phone_display_frame.setProperty("statusLabel", phone_status_label)
return phone_container_widget, phone_display_frame, phone_button, waveform_widget
def _update_phone_button_ui(self, button, state, phone_number=""):
parent_widget = button.parentWidget()
if parent_widget:
frame = parent_widget.findChild(QFrame, "phoneDisplay")
if frame:
status_label = frame.property("statusLabel")
if status_label:
if state == PhoneState.IDLE:
button.setText("Call")
button.setIcon(self.style().standardIcon(QStyle.SP_MediaPlay))
status_label.setText("Idle")
button.setStyleSheet("background-color: #0078D4;")
elif state == PhoneState.CALLING:
button.setText("Cancel")
button.setIcon(self.style().standardIcon(QStyle.SP_MediaStop))
status_label.setText(f"Calling {phone_number}...")
button.setStyleSheet("background-color: #E81123;")
elif state == PhoneState.IN_CALL:
button.setText("Hang Up")
button.setIcon(self.style().standardIcon(QStyle.SP_DialogCancelButton))
status_label.setText(f"In Call with {phone_number}")
button.setStyleSheet("background-color: #E81123;")
elif state == PhoneState.RINGING:
button.setText("Answer")
button.setIcon(self.style().standardIcon(QStyle.SP_DialogApplyButton))
status_label.setText(f"Incoming Call from {phone_number}")
button.setStyleSheet("background-color: #107C10;")
else:
print("Warning: statusLabel property not found")
else:
print("Warning: QFrame not found")
else:
print("Warning: Parent widget not found")
def update_waveform(self, client_id, data):
print(f"Updating waveform for client_id {client_id}")
waveform = self.phone1_waveform if client_id == 0 else self.phone2_waveform
waveform.set_data(data)
def map_state(self, state_str):
if state_str == "RINGING":
return PhoneState.RINGING
elif state_str in ["CALL_END", "CALL_DROPPED"]:
return PhoneState.IDLE
elif state_str == "IN_CALL":
return PhoneState.IN_CALL
return PhoneState.IDLE # Default to IDLE
def set_phone_state(self, client_id, state, number=""):
if client_id == 0:
self.phone1_state = state
self._update_phone_button_ui(self.phone1_button, self.phone1_state, number if number else "123-4567")
if state == PhoneState.IDLE and hasattr(self, 'phone1_audio_timer'):
self.phone1_audio_timer.stop()
elif state == PhoneState.IN_CALL and (not hasattr(self, 'phone1_audio_timer') or not self.phone1_audio_timer.isActive()):
self.phone1_audio_timer = QTimer(self)
self.phone1_audio_timer.timeout.connect(self.send_phone1_audio)
self.phone1_audio_timer.start(1000)
else:
self.phone2_state = state
self._update_phone_button_ui(self.phone2_button, self.phone2_state, number if number else "987-6543")
if state == PhoneState.IDLE and hasattr(self, 'phone2_audio_timer'):
self.phone2_audio_timer.stop()
elif state == PhoneState.IN_CALL and (not hasattr(self, 'phone2_audio_timer') or not self.phone2_audio_timer.isActive()):
self.phone2_audio_timer = QTimer(self)
self.phone2_audio_timer.timeout.connect(self.send_phone2_audio)
self.phone2_audio_timer.start(1000)
def phone1_action(self):
print("Phone 1 Action")
if self.phone1_state == PhoneState.IDLE:
self.phone1_state = PhoneState.CALLING
self.phone1_client.send("RINGING")
self._update_phone_button_ui(self.phone1_button, self.phone1_state, "123-4567")
elif self.phone1_state == PhoneState.CALLING:
self.phone1_state = PhoneState.IDLE
self.phone1_client.send("CALL_END")
self._update_phone_button_ui(self.phone1_button, self.phone1_state)
if hasattr(self, 'phone1_audio_timer'):
self.phone1_audio_timer.stop()
elif self.phone1_state == PhoneState.RINGING:
self.phone1_state = PhoneState.IN_CALL
self.phone2_state = PhoneState.IN_CALL # Sync both phones
self.phone1_client.send("IN_CALL")
self._update_phone_button_ui(self.phone1_button, self.phone1_state, "123-4567")
self._update_phone_button_ui(self.phone2_button, self.phone2_state, "987-6543")
# Start audio timer
self.phone1_audio_timer = QTimer(self)
self.phone1_audio_timer.timeout.connect(self.send_phone1_audio)
self.phone1_audio_timer.start(1000)
elif self.phone1_state == PhoneState.IN_CALL:
self.phone1_state = PhoneState.IDLE
self.phone2_state = PhoneState.IDLE # Sync both phones
self.phone1_client.send("CALL_END")
self._update_phone_button_ui(self.phone1_button, self.phone1_state)
self._update_phone_button_ui(self.phone2_button, self.phone2_state)
if hasattr(self, 'phone1_audio_timer'):
self.phone1_audio_timer.stop()
def send_phone1_audio(self):
if self.phone1_state == PhoneState.IN_CALL:
message = f"Audio packet {random.randint(1, 1000)}"
self.phone1_client.send(message)
def phone2_action(self):
print("Phone 2 Action")
if self.phone2_state == PhoneState.IDLE:
self.phone2_state = PhoneState.CALLING
self.phone2_client.send("RINGING")
self._update_phone_button_ui(self.phone2_button, self.phone2_state, "987-6543")
elif self.phone2_state == PhoneState.CALLING:
self.phone2_state = PhoneState.IDLE
self.phone2_client.send("CALL_END")
self._update_phone_button_ui(self.phone2_button, self.phone2_state)
if hasattr(self, 'phone2_audio_timer'):
self.phone2_audio_timer.stop()
elif self.phone2_state == PhoneState.RINGING:
self.phone2_state = PhoneState.IN_CALL
self.phone1_state = PhoneState.IN_CALL # Sync both phones
self.phone2_client.send("IN_CALL")
self._update_phone_button_ui(self.phone2_button, self.phone2_state, "987-6543")
self._update_phone_button_ui(self.phone1_button, self.phone1_state, "123-4567")
# Start audio timer
self.phone2_audio_timer = QTimer(self)
self.phone2_audio_timer.timeout.connect(self.send_phone2_audio)
self.phone2_audio_timer.start(1000)
elif self.phone2_state == PhoneState.IN_CALL:
self.phone2_state = PhoneState.IDLE
self.phone1_state = PhoneState.IDLE # Sync both phones
self.phone2_client.send("CALL_END")
self._update_phone_button_ui(self.phone2_button, self.phone2_state)
self._update_phone_button_ui(self.phone1_button, self.phone1_state)
if hasattr(self, 'phone2_audio_timer'):
self.phone2_audio_timer.stop()
def send_phone2_audio(self):
if self.phone2_state == PhoneState.IN_CALL:
message = f"Audio packet {random.randint(1, 1000)}"
self.phone2_client.send(message)
def settings_action(self):
print("Settings clicked")
def closeEvent(self, event):
self.phone1_client.stop()
self.phone2_client.stop()
event.accept()
if __name__ == "__main__":
app = QApplication(sys.argv)
window = PhoneUI()
window.show()
sys.exit(app.exec_())

View File

@ -0,0 +1,196 @@
import socket
import logging
from dissononce.processing.impl.handshakestate import HandshakeState
from dissononce.processing.impl.symmetricstate import SymmetricState
from dissononce.processing.impl.cipherstate import CipherState
from dissononce.processing.handshakepatterns.interactive.XK import XKHandshakePattern
from dissononce.cipher.chachapoly import ChaChaPolyCipher
from dissononce.dh.x25519.x25519 import X25519DH
from dissononce.dh.keypair import KeyPair
from dissononce.dh.x25519.public import PublicKey
from dissononce.hash.sha256 import SHA256Hash
# Configure logging - disabled by default to avoid noise
# logging.basicConfig(level=logging.DEBUG, format="%(message)s")
class NoiseXKSession:
@staticmethod
def generate_keypair() -> KeyPair:
"""
Generate a static X25519 KeyPair.
Returns:
KeyPair object with .private and .public attributes.
"""
return X25519DH().generate_keypair()
def __init__(self, local_kp: KeyPair, peer_pubkey: PublicKey):
"""
Initialize with our KeyPair and the peer's PublicKey.
"""
self.local_kp: KeyPair = local_kp
self.peer_pubkey: PublicKey = peer_pubkey
# Build the Noise handshake state (X25519 DH, ChaChaPoly cipher, SHA256 hash)
cipher = ChaChaPolyCipher()
dh = X25519DH()
hshash = SHA256Hash()
symmetric = SymmetricState(CipherState(cipher), hshash)
self._hs = HandshakeState(symmetric, dh)
self._send_cs = None # type: CipherState
self._recv_cs = None
def handshake(self, sock: socket.socket, initiator: bool) -> None:
"""
Perform the XK handshake over the socket. Branches on initiator/responder
so that each side reads or writes in the correct message order.
On completion, self._send_cs and self._recv_cs hold the two CipherStates.
"""
# logging.debug(f"[handshake] start (initiator={initiator})")
# initialize with our KeyPair and their PublicKey
if initiator:
# initiator knows peers static out-of-band
self._hs.initialize(
XKHandshakePattern(),
True,
b'',
s=self.local_kp,
rs=self.peer_pubkey
)
else:
# logging.debug("[handshake] responder initializing without rs")
# responder must NOT supply rs here
self._hs.initialize(
XKHandshakePattern(),
False,
b'',
s=self.local_kp
)
cs_pair = None
if initiator:
# 1) -> e
buf1 = bytearray()
cs_pair = self._hs.write_message(b'', buf1)
# logging.debug(f"[-> e] {buf1.hex()}")
self._send_all(sock, buf1)
# 2) <- e, es, s, ss
msg2 = self._recv_all(sock)
# logging.debug(f"[<- msg2] {msg2.hex()}")
self._hs.read_message(msg2, bytearray())
# 3) -> se (final)
buf3 = bytearray()
cs_pair = self._hs.write_message(b'', buf3)
# logging.debug(f"[-> se] {buf3.hex()}")
self._send_all(sock, buf3)
else:
# 1) <- e
msg1 = self._recv_all(sock)
# logging.debug(f"[<- e] {msg1.hex()}")
self._hs.read_message(msg1, bytearray())
# 2) -> e, es, s, ss
buf2 = bytearray()
cs_pair = self._hs.write_message(b'', buf2)
# logging.debug(f"[-> msg2] {buf2.hex()}")
self._send_all(sock, buf2)
# 3) <- se (final)
msg3 = self._recv_all(sock)
# logging.debug(f"[<- se] {msg3.hex()}")
cs_pair = self._hs.read_message(msg3, bytearray())
# on the final step, we must get exactly two CipherStates
if not cs_pair or len(cs_pair) != 2:
raise RuntimeError("Handshake did not complete properly")
cs0, cs1 = cs_pair
# the library returns (cs_encrypt_for_initiator, cs_decrypt_for_initiator)
if initiator:
# initiator: cs0 encrypts, cs1 decrypts
self._send_cs, self._recv_cs = cs0, cs1
else:
# responder must swap
self._send_cs, self._recv_cs = cs1, cs0
# dump the raw symmetric keys & nonces (if available)
self._dump_cipherstate("HANDSHAKE→ SEND", self._send_cs)
self._dump_cipherstate("HANDSHAKE→ RECV", self._recv_cs)
def send(self, sock: socket.socket, plaintext: bytes) -> None:
"""
Encrypt and send a message.
"""
if self._send_cs is None:
raise RuntimeError("Handshake not complete")
ct = self._send_cs.encrypt_with_ad(b'', plaintext)
logging.debug(f"[ENCRYPT] {ct.hex()}")
# self._dump_cipherstate("SEND→ after encrypt", self._send_cs)
self._send_all(sock, ct)
def receive(self, sock: socket.socket) -> bytes:
"""
Receive and decrypt a message.
"""
if self._recv_cs is None:
raise RuntimeError("Handshake not complete")
ct = self._recv_all(sock)
logging.debug(f"[CIPHERTEXT] {ct.hex()}")
# self._dump_cipherstate("RECV→ before decrypt", self._recv_cs)
pt = self._recv_cs.decrypt_with_ad(b'', ct)
logging.debug(f"[DECRYPT] {pt!r}")
return pt
def decrypt(self, ciphertext: bytes) -> bytes:
"""
Decrypt a ciphertext received as bytes.
"""
if self._recv_cs is None:
raise RuntimeError("Handshake not complete")
# Remove 2-byte length prefix if present
if len(ciphertext) >= 2 and int.from_bytes(ciphertext[:2], 'big') == len(ciphertext) - 2:
logging.debug(f"[DECRYPT] Stripping 2-byte length prefix from {len(ciphertext)}-byte input")
ciphertext = ciphertext[2:]
logging.debug(f"[CIPHERTEXT] {ciphertext.hex()}")
# self._dump_cipherstate("DECRYPT→ before decrypt", self._recv_cs)
pt = self._recv_cs.decrypt_with_ad(b'', ciphertext)
logging.debug(f"[DECRYPT] {pt!r}")
return pt
def _send_all(self, sock: socket.socket, data: bytes) -> None:
# Length-prefix (2 bytes big-endian) + data
length = len(data).to_bytes(2, 'big')
logging.debug(f"[SEND] length={length.hex()}, data={data.hex()}")
sock.sendall(length + data)
def _recv_all(self, sock: socket.socket) -> bytes:
# Read 2-byte length prefix, then the payload
hdr = self._read_exact(sock, 2)
length = int.from_bytes(hdr, 'big')
# logging.debug(f"[RECV] length={length} ({hdr.hex()})")
data = self._read_exact(sock, length)
# logging.debug(f"[RECV] data={data.hex()}")
return data
@staticmethod
def _read_exact(sock: socket.socket, n: int) -> bytes:
buf = bytearray()
while len(buf) < n:
chunk = sock.recv(n - len(buf))
if not chunk:
raise ConnectionError("Socket closed during read")
buf.extend(chunk)
return bytes(buf)
def _dump_cipherstate(self, label: str, cs: CipherState) -> None:
"""
Print the symmetric key (cs._k) and nonce counter (cs._n) for inspection.
"""
key = cs._key
nonce = getattr(cs, "_n", None)
if isinstance(key, (bytes, bytearray)):
key_hex = key.hex()
else:
key_hex = repr(key)
logging.debug(f"[{label}] key={key_hex}")

View File

@ -0,0 +1,67 @@
import random
import struct
from PyQt5.QtWidgets import QWidget
from PyQt5.QtCore import QTimer, QSize, QPointF
from PyQt5.QtGui import QPainter, QColor, QPen, QLinearGradient, QBrush
class WaveformWidget(QWidget):
def __init__(self, parent=None, dynamic=False):
super().__init__(parent)
self.dynamic = dynamic
self.setMinimumSize(200, 60)
self.setMaximumHeight(80)
self.waveform_data = [random.randint(10, 90) for _ in range(50)]
if self.dynamic:
self.timer = QTimer(self)
self.timer.timeout.connect(self.update_waveform)
self.timer.start(100)
def update_waveform(self):
self.waveform_data = self.waveform_data[1:] + [random.randint(10, 90)]
self.update()
def set_data(self, data):
# Convert audio data to visual amplitude
if isinstance(data, bytes) and len(data) >= 2:
# Extract PCM samples (16-bit signed)
num_samples = min(len(data) // 2, 20) # Take up to 20 samples
samples = []
for i in range(0, num_samples * 2, 2):
if i + 1 < len(data):
sample = struct.unpack('h', data[i:i+2])[0]
# Normalize to 0-100 range
amplitude = abs(sample) / 327.68 # 32768/100
samples.append(min(95, max(5, amplitude)))
if samples:
# Add new samples and maintain fixed size
self.waveform_data.extend(samples)
# Keep last 50 samples
self.waveform_data = self.waveform_data[-50:]
else:
# Fallback for non-audio data
amplitude = sum(byte for byte in data[:20]) % 90 + 10
self.waveform_data = self.waveform_data[1:] + [amplitude]
self.update()
def paintEvent(self, event):
painter = QPainter(self)
painter.setRenderHint(QPainter.Antialiasing)
painter.fillRect(self.rect(), QColor("#2D2D2D"))
gradient = QLinearGradient(0, 0, 0, self.height())
gradient.setColorAt(0.0, QColor("#0078D4"))
gradient.setColorAt(1.0, QColor("#50E6A4"))
pen = QPen(QBrush(gradient), 2)
painter.setPen(pen)
bar_width = self.width() / len(self.waveform_data)
max_h = self.height() - 10
for i, val in enumerate(self.waveform_data):
bar_height = (val / 100.0) * max_h
x = i * bar_width
y = (self.height() - bar_height) / 2
painter.drawLine(QPointF(x + bar_width / 2, y), QPointF(x + bar_width / 2, y + bar_height))
def resizeEvent(self, event):
super().resizeEvent(event)
self.update()

View File

@ -1,24 +0,0 @@
#external_caller.py
import socket
import time
def connect():
caller_socket = socket.socket(socket.AF_INET, socket.SOCK_STREAM)
caller_socket.connect(('localhost', 5555))
caller_socket.send("CALLER".encode())
print("Connected to GSM simulator as CALLER")
time.sleep(2) # Wait 2 seconds for receiver to connect
for i in range(5):
message = f"Audio packet {i + 1}"
caller_socket.send(message.encode())
print(f"Sent: {message}")
time.sleep(1)
caller_socket.send("CALL_END".encode())
print("Call ended.")
caller_socket.close()
if __name__ == "__main__":
connect()

View File

@ -1,37 +0,0 @@
#external_receiver.py
import socket
def connect():
receiver_socket = socket.socket(socket.AF_INET, socket.SOCK_STREAM)
receiver_socket.settimeout(15) # Increase timeout to 15 seconds
receiver_socket.connect(('localhost', 5555))
receiver_socket.send("RECEIVER".encode())
print("Connected to GSM simulator as RECEIVER")
while True:
try:
data = receiver_socket.recv(1024).decode().strip()
if not data:
print("No data received. Connection closed.")
break
if data == "RINGING":
print("Incoming call... ringing")
elif data == "CALL_END":
print("Call ended by caller.")
break
elif data == "CALL_DROPPED":
print("Call dropped by network.")
break
else:
print(f"Received: {data}")
except socket.timeout:
print("Timed out waiting for data.")
break
except Exception as e:
print(f"Receiver error: {e}")
break
receiver_socket.close()
if __name__ == "__main__":
connect()

View File

@ -1,59 +0,0 @@
#gsm_simulator.py
import socket
import threading
import time
HOST = "0.0.0.0"
PORT = 12345
FRAME_SIZE = 1000
FRAME_DELAY = 0.02
clients = []
def handle_client(client_sock, client_id):
print(f"Starting handle_client for Client {client_id}")
while True:
try:
other_client = clients[1 - client_id] if len(clients) == 2 else None
print(f"Client {client_id} waiting for data, other_client exists: {other_client is not None}")
data = client_sock.recv(1024)
if not data:
print(f"Client {client_id} disconnected or no data received")
break
if other_client:
for i in range(0, len(data), FRAME_SIZE):
frame = data[i:i + FRAME_SIZE]
other_client.send(frame)
time.sleep(FRAME_DELAY)
print(f"Forwarded {len(data)} bytes from Client {client_id} to Client {1 - client_id}")
except Exception as e:
print(f"Error with Client {client_id}: {e}")
break
print(f"Closing connection for Client {client_id}")
client_sock.close()
def start_simulator():
server = socket.socket(socket.AF_INET, socket.SOCK_STREAM)
server.bind((HOST, PORT))
server.listen(2)
print(f"GSM Simulator listening on {HOST}:{PORT}...")
while len(clients) < 2:
client_sock, addr = server.accept()
client_sock.setsockopt(socket.SOL_SOCKET, socket.SO_KEEPALIVE, 1) # Keep connection alive
clients.append(client_sock)
client_id = len(clients) - 1
print(f"Client {client_id} connected from {addr}")
threading.Thread(target=handle_client, args=(client_sock, client_id), daemon=True).start()
try:
while True:
time.sleep(1)
except KeyboardInterrupt:
print("Shutting down simulator...")
for client in clients:
client.close()
server.close()
if __name__ == "__main__":
start_simulator()

View File

@ -0,0 +1,58 @@
#!/bin/bash
# Install audio dependencies for DryBox
echo "Installing audio dependencies for DryBox..."
echo
# Detect OS
if [ -f /etc/os-release ]; then
. /etc/os-release
OS=$ID
VER=$VERSION_ID
else
echo "Cannot detect OS. Please install manually."
exit 1
fi
case $OS in
fedora)
echo "Detected Fedora $VER"
echo "Installing python3-devel and portaudio-devel..."
sudo dnf install -y python3-devel portaudio-devel
;;
ubuntu|debian)
echo "Detected $OS $VER"
echo "Installing python3-dev and portaudio19-dev..."
sudo apt-get update
sudo apt-get install -y python3-dev portaudio19-dev
;;
*)
echo "Unsupported OS: $OS"
echo "Please install manually:"
echo " - Python development headers"
echo " - PortAudio development libraries"
exit 1
;;
esac
if [ $? -eq 0 ]; then
echo
echo "System dependencies installed successfully!"
echo "Now installing PyAudio..."
pip install pyaudio
if [ $? -eq 0 ]; then
echo
echo "✅ Audio dependencies installed successfully!"
echo "You can now use real-time audio playback in DryBox."
else
echo
echo "❌ Failed to install PyAudio"
echo "Try: pip install --user pyaudio"
fi
else
echo
echo "❌ Failed to install system dependencies"
fi

View File

@ -1,86 +0,0 @@
import socket
import os
import time
import subprocess
# Configuration
HOST = "localhost"
PORT = 12345
INPUT_FILE = "input.wav"
OUTPUT_FILE = "received.wav"
def encrypt_data(data):
return data # Replace with your encryption protocol
def decrypt_data(data):
return data # Replace with your decryption protocol
def run_protocol(send_mode=True):
"""Connect to the simulator and send/receive data."""
sock = socket.socket(socket.AF_INET, socket.SOCK_STREAM)
sock.connect((HOST, PORT))
print(f"Connected to simulator at {HOST}:{PORT}")
if send_mode:
# Sender mode: Encode audio with toast
os.system(f"toast -p -l {INPUT_FILE}") # Creates input.wav.gsm
input_gsm_file = f"{INPUT_FILE}.gsm"
if not os.path.exists(input_gsm_file):
print(f"Error: {input_gsm_file} not created")
sock.close()
return
with open(input_gsm_file, "rb") as f:
voice_data = f.read()
encrypted_data = encrypt_data(voice_data)
sock.send(encrypted_data)
print(f"Sent {len(encrypted_data)} bytes")
os.remove(input_gsm_file) # Clean up
else:
# Receiver mode: Wait for and receive data
print("Waiting for data from sender...")
received_data = b""
sock.settimeout(5.0)
try:
while True:
print("Calling recv()...")
data = sock.recv(1024)
print(f"Received {len(data)} bytes")
if not data:
print("Connection closed by sender or simulator")
break
received_data += data
except socket.timeout:
print("Timed out waiting for data")
if received_data:
with open("received.gsm", "wb") as f:
f.write(decrypt_data(received_data))
print(f"Wrote {len(received_data)} bytes to received.gsm")
# Decode with untoast, then convert to WAV with sox
result = subprocess.run(["untoast", "received.gsm"], capture_output=True, text=True)
print(f"untoast return code: {result.returncode}")
print(f"untoast stderr: {result.stderr}")
if result.returncode == 0:
if os.path.exists("received"):
# Convert raw PCM to WAV (8 kHz, mono, 16-bit)
subprocess.run(["sox", "-t", "raw", "-r", "8000", "-e", "signed", "-b", "16", "-c", "1", "received",
OUTPUT_FILE])
os.remove("received")
print(f"Received and saved {len(received_data)} bytes to {OUTPUT_FILE}")
else:
print("Error: 'received' file not created by untoast")
else:
print(f"untoast failed: {result.stderr}")
else:
print("No data received from simulator")
sock.close()
if __name__ == "__main__":
mode = input("Enter 'send' to send data or 'receive' to receive data: ").strip().lower()
run_protocol(send_mode=(mode == "send"))

View File

@ -0,0 +1,22 @@
# Core dependencies for DryBox integrated protocol
# Noise Protocol Framework
dissononce>=0.34.3
# Cryptography
cryptography>=41.0.0
# Qt GUI
PyQt5>=5.15.0
# Numerical computing (for signal processing)
numpy>=1.24.0
# Audio processing (for real audio I/O)
pyaudio>=0.2.11
# Wave file handling (included in standard library)
# wave
# For future integration with real Codec2
# pycodec2>=1.0.0

View File

@ -0,0 +1,11 @@
#!/bin/bash
# Run DryBox UI with proper Wayland support on Fedora
cd "$(dirname "$0")"
# Use native Wayland if available
export QT_QPA_PLATFORM=wayland
# Run the UI
cd UI
python3 main.py

View File

@ -0,0 +1,110 @@
import socket
import threading
import time
import struct
HOST = "0.0.0.0"
PORT = 12345
FRAME_SIZE = 10000 # Increased to avoid fragmenting voice frames
FRAME_DELAY = 0.02
clients = []
clients_lock = threading.Lock()
def handle_client(client_sock, client_id):
print(f"Starting handle_client for Client {client_id}")
recv_buffer = bytearray()
try:
while True:
other_client = None
with clients_lock:
if len(clients) == 2 and client_id < len(clients):
other_client = clients[1 - client_id]
try:
chunk = client_sock.recv(4096)
if not chunk:
print(f"Client {client_id} disconnected or no data received")
break
# Add to buffer
recv_buffer.extend(chunk)
# Process complete messages
while len(recv_buffer) >= 4:
# Read message length
msg_len = struct.unpack('>I', recv_buffer[:4])[0]
# Check if we have the complete message
if len(recv_buffer) >= 4 + msg_len:
# Extract complete message (including length prefix)
complete_msg = bytes(recv_buffer[:4+msg_len])
# Remove from buffer
recv_buffer = recv_buffer[4+msg_len:]
# Forward complete message to other client
if other_client:
try:
other_client.send(complete_msg)
print(f"Forwarded {len(complete_msg)} bytes from Client {client_id} to Client {1 - client_id}")
except Exception as e:
print(f"Error forwarding from Client {client_id}: {e}")
else:
print(f"No other client to forward to from Client {client_id}")
else:
# Wait for more data
break
except socket.error as e:
print(f"Socket error with Client {client_id}: {e}")
break
finally:
print(f"Closing connection for Client {client_id}")
with clients_lock:
if client_id < len(clients) and clients[client_id] == client_sock:
clients.pop(client_id)
print(f"Removed Client {client_id} from clients list")
client_sock.close()
def start_simulator():
server = socket.socket(socket.AF_INET, socket.SOCK_STREAM)
server.setsockopt(socket.SOL_SOCKET, socket.SO_REUSEADDR, 1)
server.bind((HOST, PORT))
server.listen(2)
print(f"GSM Simulator listening on {HOST}:{PORT}...")
try:
while True:
client_sock, addr = server.accept()
client_sock.setsockopt(socket.SOL_SOCKET, socket.SO_KEEPALIVE, 1) # Keep connection alive
with clients_lock:
if len(clients) < 2:
clients.append(client_sock)
client_id = len(clients) - 1
else:
# Replace a closed socket or reject if both slots are active
replaced = False
for i in range(len(clients)):
if clients[i].fileno() == -1: # Check if socket is closed
clients[i] = client_sock
client_id = i
replaced = True
break
if not replaced:
print(f"Rejecting new client from {addr}: max clients (2) reached")
client_sock.close()
continue
print(f"Client {client_id} connected from {addr}")
threading.Thread(target=handle_client, args=(client_sock, client_id), daemon=True).start()
except KeyboardInterrupt:
print("Shutting down simulator...")
finally:
with clients_lock:
for client in clients:
client.close()
clients.clear()
server.close()
if __name__ == "__main__":
start_simulator()

View File

@ -5,7 +5,8 @@
# Variables
IMAGE_NAME="gsm-simulator"
CONTAINER_NAME="gsm-sim"
PORT="5555"
PORT="12345"
LOG_FILE="gsm_simulator.log"
# Check if Docker is installed
if ! command -v docker &> /dev/null; then
@ -13,7 +14,7 @@ if ! command -v docker &> /dev/null; then
exit 1
fi
# Check if the gsm_simulator.py file exists in the current directory
# Check if gsm_simulator.py exists
if [ ! -f "gsm_simulator.py" ]; then
echo "Error: gsm_simulator.py not found in the current directory."
echo "Please ensure gsm_simulator.py is present and try again."
@ -26,11 +27,16 @@ if [ ! -f "Dockerfile" ]; then
cat <<EOF > Dockerfile
FROM python:3.9-slim
WORKDIR /app
COPY gsm_simulator.py /app
COPY gsm_simulator.py .
EXPOSE 12345
CMD ["python", "gsm_simulator.py"]
EOF
fi
# Ensure log file is writable
touch $LOG_FILE
chmod 666 $LOG_FILE
# Build the Docker image
echo "Building Docker image: $IMAGE_NAME..."
docker build -t $IMAGE_NAME .
@ -41,7 +47,7 @@ if [ $? -ne 0 ]; then
exit 1
fi
# Stop and remove any existing container with the same name
# Stop and remove any existing container
if [ "$(docker ps -q -f name=$CONTAINER_NAME)" ]; then
echo "Stopping existing container: $CONTAINER_NAME..."
docker stop $CONTAINER_NAME
@ -51,16 +57,12 @@ if [ "$(docker ps -aq -f name=$CONTAINER_NAME)" ]; then
docker rm $CONTAINER_NAME
fi
# Run the Docker container
echo "Launching GSM Simulator in Docker container: $CONTAINER_NAME..."
docker run -d -p $PORT:$PORT --name $CONTAINER_NAME $IMAGE_NAME
# Clean up dangling images
docker image prune -f
# Check if the container is running
if [ $? -eq 0 ]; then
echo "GSM Simulator is running on port $PORT."
echo "Container ID: $(docker ps -q -f name=$CONTAINER_NAME)"
echo "You can now connect your external Python programs to localhost:$PORT."
else
echo "Error: Failed to launch the container."
exit 1
fi
# Run the Docker container interactively
echo "Launching GSM Simulator in Docker container: $CONTAINER_NAME..."
docker run -it --rm -p $PORT:$PORT --name $CONTAINER_NAME $IMAGE_NAME | tee $LOG_FILE
# Note: Script will block here until container exits
echo "GSM Simulator stopped. Logs saved to $LOG_FILE."

View File

@ -0,0 +1,714 @@
"""
Voice codec integration for encrypted voice over GSM.
Implements Codec2 compression with FSK modulation for transmitting
encrypted voice data over standard GSM voice channels.
"""
import array
import math
import struct
from typing import Optional, Tuple, List
from dataclasses import dataclass
from enum import IntEnum
try:
import numpy as np
HAS_NUMPY = True
except ImportError:
HAS_NUMPY = False
# ANSI colors
RED = "\033[91m"
GREEN = "\033[92m"
YELLOW = "\033[93m"
BLUE = "\033[94m"
RESET = "\033[0m"
class Codec2Mode(IntEnum):
"""Codec2 bitrate modes."""
MODE_3200 = 0 # 3200 bps
MODE_2400 = 1 # 2400 bps
MODE_1600 = 2 # 1600 bps
MODE_1400 = 3 # 1400 bps
MODE_1300 = 4 # 1300 bps
MODE_1200 = 5 # 1200 bps (recommended for robustness)
MODE_700C = 6 # 700 bps
@dataclass
class Codec2Frame:
"""Represents a single Codec2 compressed voice frame."""
mode: Codec2Mode
bits: bytes
timestamp: float
frame_number: int
class Codec2Wrapper:
"""
Wrapper for Codec2 voice codec.
In production, this would use py_codec2 or ctypes bindings to libcodec2.
This is a simulation interface for protocol development.
"""
# Frame sizes in bits for each mode
FRAME_BITS = {
Codec2Mode.MODE_3200: 64,
Codec2Mode.MODE_2400: 48,
Codec2Mode.MODE_1600: 64,
Codec2Mode.MODE_1400: 56,
Codec2Mode.MODE_1300: 52,
Codec2Mode.MODE_1200: 48,
Codec2Mode.MODE_700C: 28
}
# Frame duration in ms
FRAME_MS = {
Codec2Mode.MODE_3200: 20,
Codec2Mode.MODE_2400: 20,
Codec2Mode.MODE_1600: 40,
Codec2Mode.MODE_1400: 40,
Codec2Mode.MODE_1300: 40,
Codec2Mode.MODE_1200: 40,
Codec2Mode.MODE_700C: 40
}
def __init__(self, mode: Codec2Mode = Codec2Mode.MODE_1200):
"""
Initialize Codec2 wrapper.
Args:
mode: Codec2 bitrate mode (default 1200 bps for robustness)
"""
self.mode = mode
self.frame_bits = self.FRAME_BITS[mode]
self.frame_bytes = (self.frame_bits + 7) // 8
self.frame_ms = self.FRAME_MS[mode]
self.frame_samples = int(8000 * self.frame_ms / 1000) # 8kHz sampling
self.frame_counter = 0
# Quiet initialization - no print
def encode(self, audio_samples) -> Optional[Codec2Frame]:
"""
Encode PCM audio samples to Codec2 frame.
Args:
audio_samples: PCM samples (8kHz, 16-bit signed)
Returns:
Codec2Frame or None if insufficient samples
"""
if len(audio_samples) < self.frame_samples:
return None
# In production: call codec2_encode(state, bits, samples)
# Simulation: create pseudo-compressed data
compressed = self._simulate_compression(audio_samples[:self.frame_samples])
frame = Codec2Frame(
mode=self.mode,
bits=compressed,
timestamp=self.frame_counter * self.frame_ms / 1000.0,
frame_number=self.frame_counter
)
self.frame_counter += 1
return frame
def decode(self, frame: Codec2Frame):
"""
Decode Codec2 frame to PCM audio samples.
Args:
frame: Codec2 compressed frame
Returns:
PCM samples (8kHz, 16-bit signed)
"""
if frame.mode != self.mode:
raise ValueError(f"Frame mode {frame.mode} doesn't match decoder mode {self.mode}")
# In production: call codec2_decode(state, samples, bits)
# Simulation: decompress to audio
return self._simulate_decompression(frame.bits)
def _simulate_compression(self, samples) -> bytes:
"""Simulate Codec2 compression (for testing)."""
# Convert to list if needed
if hasattr(samples, 'tolist'):
sample_list = samples.tolist()
elif hasattr(samples, '__iter__'):
sample_list = list(samples)
else:
sample_list = samples
# Extract basic features for simulation
if HAS_NUMPY and hasattr(samples, '__array__'):
# Convert to numpy array if needed
np_samples = np.asarray(samples, dtype=np.float32)
if len(np_samples) > 0:
mean_square = np.mean(np_samples ** 2)
energy = np.sqrt(mean_square) if not np.isnan(mean_square) else 0.0
zero_crossings = np.sum(np.diff(np.sign(np_samples)) != 0)
else:
energy = 0.0
zero_crossings = 0
else:
# Manual calculation without numpy
if sample_list and len(sample_list) > 0:
energy = math.sqrt(sum(s**2 for s in sample_list) / len(sample_list))
zero_crossings = sum(1 for i in range(1, len(sample_list))
if (sample_list[i-1] >= 0) != (sample_list[i] >= 0))
else:
energy = 0.0
zero_crossings = 0
# Pack into bytes (simplified)
# Ensure values are valid
energy_int = max(0, min(65535, int(energy)))
zc_int = max(0, min(65535, int(zero_crossings)))
data = struct.pack('<HH', energy_int, zc_int)
# Pad to expected frame size
data += b'\x00' * (self.frame_bytes - len(data))
return data[:self.frame_bytes]
def _simulate_decompression(self, compressed: bytes):
"""Simulate Codec2 decompression (for testing)."""
# Unpack features
if len(compressed) >= 4:
energy, zero_crossings = struct.unpack('<HH', compressed[:4])
else:
energy, zero_crossings = 1000, 100
# Generate synthetic speech-like signal
if HAS_NUMPY:
t = np.linspace(0, self.frame_ms/1000, self.frame_samples)
# Base frequency from zero crossings
freq = zero_crossings * 10 # Simplified mapping
# Generate harmonics
signal = np.zeros(self.frame_samples)
for harmonic in range(1, 4):
signal += np.sin(2 * np.pi * freq * harmonic * t) / harmonic
# Apply energy envelope
signal *= energy / 10000.0
# Convert to 16-bit PCM
return (signal * 32767).astype(np.int16)
else:
# Manual generation without numpy
samples = []
freq = zero_crossings * 10
for i in range(self.frame_samples):
t = i / 8000.0 # 8kHz sample rate
value = 0
for harmonic in range(1, 4):
value += math.sin(2 * math.pi * freq * harmonic * t) / harmonic
value *= energy / 10000.0
# Clamp to 16-bit range
sample = int(value * 32767)
sample = max(-32768, min(32767, sample))
samples.append(sample)
return array.array('h', samples)
class FSKModem:
"""
4-FSK modem for transmitting digital data over voice channels.
Designed to survive GSM/AMR/EVS vocoders.
"""
def __init__(self, sample_rate: int = 8000, baud_rate: int = 600):
"""
Initialize FSK modem.
Args:
sample_rate: Audio sample rate (Hz)
baud_rate: Symbol rate (baud)
"""
self.sample_rate = sample_rate
self.baud_rate = baud_rate
self.samples_per_symbol = int(sample_rate / baud_rate)
# 4-FSK frequencies (300-3400 Hz band)
self.frequencies = [
600, # 00
1200, # 01
1800, # 10
2400 # 11
]
# Preamble for synchronization (800 Hz, 100ms)
self.preamble_freq = 800
self.preamble_duration = 0.1 # seconds
# Quiet initialization - no print
def modulate(self, data: bytes, add_preamble: bool = True):
"""
Modulate binary data to FSK audio signal.
Args:
data: Binary data to modulate
add_preamble: Whether to add synchronization preamble
Returns:
Audio signal (normalized float32 array or list)
"""
# Convert bytes to dibits (2-bit symbols)
symbols = []
for byte in data:
symbols.extend([
(byte >> 6) & 0x03,
(byte >> 4) & 0x03,
(byte >> 2) & 0x03,
byte & 0x03
])
# Generate audio signal
signal = []
# Add preamble
if add_preamble:
preamble_samples = int(self.preamble_duration * self.sample_rate)
if HAS_NUMPY:
t = np.arange(preamble_samples) / self.sample_rate
preamble = np.sin(2 * np.pi * self.preamble_freq * t)
signal.extend(preamble)
else:
for i in range(preamble_samples):
t = i / self.sample_rate
value = math.sin(2 * math.pi * self.preamble_freq * t)
signal.append(value)
# Modulate symbols
for symbol in symbols:
freq = self.frequencies[symbol]
if HAS_NUMPY:
t = np.arange(self.samples_per_symbol) / self.sample_rate
tone = np.sin(2 * np.pi * freq * t)
signal.extend(tone)
else:
for i in range(self.samples_per_symbol):
t = i / self.sample_rate
value = math.sin(2 * math.pi * freq * t)
signal.append(value)
# Apply smoothing to reduce clicks
if HAS_NUMPY:
audio = np.array(signal, dtype=np.float32)
else:
audio = array.array('f', signal)
audio = self._apply_envelope(audio)
return audio
def demodulate(self, audio) -> Tuple[bytes, float]:
"""
Demodulate FSK audio signal to binary data.
Args:
audio: Audio signal
Returns:
Tuple of (demodulated data, confidence score)
"""
# Find preamble
preamble_start = self._find_preamble(audio)
if preamble_start < 0:
return b'', 0.0
# Skip preamble
data_start = preamble_start + int(self.preamble_duration * self.sample_rate)
# Demodulate symbols
symbols = []
confidence_scores = []
pos = data_start
while pos + self.samples_per_symbol <= len(audio):
symbol_audio = audio[pos:pos + self.samples_per_symbol]
symbol, confidence = self._demodulate_symbol(symbol_audio)
symbols.append(symbol)
confidence_scores.append(confidence)
pos += self.samples_per_symbol
# Convert symbols to bytes
data = bytearray()
for i in range(0, len(symbols), 4):
if i + 3 < len(symbols):
byte = (symbols[i] << 6) | (symbols[i+1] << 4) | (symbols[i+2] << 2) | symbols[i+3]
data.append(byte)
if HAS_NUMPY and confidence_scores:
avg_confidence = np.mean(confidence_scores)
else:
avg_confidence = sum(confidence_scores) / len(confidence_scores) if confidence_scores else 0.0
return bytes(data), avg_confidence
def _find_preamble(self, audio) -> int:
"""Find preamble in audio signal."""
# Simple energy-based detection
window_size = int(0.01 * self.sample_rate) # 10ms window
if HAS_NUMPY:
for i in range(0, len(audio) - window_size, window_size // 2):
window = audio[i:i + window_size]
# Check for preamble frequency
fft = np.fft.fft(window)
freqs = np.fft.fftfreq(len(window), 1/self.sample_rate)
# Find peak near preamble frequency
idx = np.argmax(np.abs(fft[:len(fft)//2]))
peak_freq = abs(freqs[idx])
if abs(peak_freq - self.preamble_freq) < 50: # 50 Hz tolerance
return i
else:
# Simple zero-crossing based detection without FFT
for i in range(0, len(audio) - window_size, window_size // 2):
window = list(audio[i:i + window_size])
# Count zero crossings
zero_crossings = 0
for j in range(1, len(window)):
if (window[j-1] >= 0) != (window[j] >= 0):
zero_crossings += 1
# Estimate frequency from zero crossings
estimated_freq = (zero_crossings * self.sample_rate) / (2 * len(window))
if abs(estimated_freq - self.preamble_freq) < 100: # 100 Hz tolerance
return i
return -1
def _demodulate_symbol(self, audio) -> Tuple[int, float]:
"""Demodulate a single FSK symbol."""
if HAS_NUMPY:
# FFT-based demodulation
fft = np.fft.fft(audio)
freqs = np.fft.fftfreq(len(audio), 1/self.sample_rate)
magnitude = np.abs(fft[:len(fft)//2])
# Find energy at each FSK frequency
energies = []
for freq in self.frequencies:
idx = np.argmin(np.abs(freqs[:len(freqs)//2] - freq))
energy = magnitude[idx]
energies.append(energy)
# Select symbol with highest energy
symbol = np.argmax(energies)
else:
# Goertzel algorithm for specific frequency detection
audio_list = list(audio) if hasattr(audio, '__iter__') else audio
energies = []
for freq in self.frequencies:
# Goertzel algorithm
omega = 2 * math.pi * freq / self.sample_rate
coeff = 2 * math.cos(omega)
s_prev = 0
s_prev2 = 0
for sample in audio_list:
s = sample + coeff * s_prev - s_prev2
s_prev2 = s_prev
s_prev = s
# Calculate magnitude
power = s_prev2 * s_prev2 + s_prev * s_prev - coeff * s_prev * s_prev2
energies.append(math.sqrt(abs(power)))
# Select symbol with highest energy
symbol = energies.index(max(energies))
# Confidence is ratio of strongest to second strongest
sorted_energies = sorted(energies, reverse=True)
confidence = sorted_energies[0] / (sorted_energies[1] + 1e-6)
return symbol, min(confidence, 10.0) / 10.0
def _apply_envelope(self, audio):
"""Apply smoothing envelope to reduce clicks."""
# Simple raised cosine envelope
ramp_samples = int(0.002 * self.sample_rate) # 2ms ramps
if len(audio) > 2 * ramp_samples:
if HAS_NUMPY:
# Fade in
t = np.linspace(0, np.pi/2, ramp_samples)
audio[:ramp_samples] *= np.sin(t) ** 2
# Fade out
audio[-ramp_samples:] *= np.sin(t[::-1]) ** 2
else:
# Manual fade in
for i in range(ramp_samples):
t = (i / ramp_samples) * (math.pi / 2)
factor = math.sin(t) ** 2
audio[i] *= factor
# Manual fade out
for i in range(ramp_samples):
t = ((ramp_samples - 1 - i) / ramp_samples) * (math.pi / 2)
factor = math.sin(t) ** 2
audio[-(i+1)] *= factor
return audio
class VoiceProtocol:
"""
Integrates voice codec and modem with the Icing protocol
for encrypted voice transmission over GSM.
"""
def __init__(self, protocol_instance):
"""
Initialize voice protocol handler.
Args:
protocol_instance: IcingProtocol instance
"""
self.protocol = protocol_instance
self.codec = Codec2Wrapper(Codec2Mode.MODE_1200)
self.modem = FSKModem(sample_rate=8000, baud_rate=600)
# Voice crypto state
self.voice_iv_counter = 0
self.voice_sequence = 0
# Buffers
if HAS_NUMPY:
self.audio_buffer = np.array([], dtype=np.int16)
else:
self.audio_buffer = array.array('h') # 16-bit signed integers
self.frame_buffer = []
print(f"{GREEN}[VOICE]{RESET} Voice protocol initialized")
def process_voice_input(self, audio_samples):
"""
Process voice input: compress, encrypt, and modulate.
Args:
audio_samples: PCM audio samples (8kHz, 16-bit)
Returns:
Modulated audio signal ready for transmission (numpy array or array.array)
"""
# Add to buffer
if HAS_NUMPY:
self.audio_buffer = np.concatenate([self.audio_buffer, audio_samples])
else:
self.audio_buffer.extend(audio_samples)
# Process complete frames
modulated_audio = []
while len(self.audio_buffer) >= self.codec.frame_samples:
# Extract frame
if HAS_NUMPY:
frame_audio = self.audio_buffer[:self.codec.frame_samples]
self.audio_buffer = self.audio_buffer[self.codec.frame_samples:]
else:
frame_audio = array.array('h', self.audio_buffer[:self.codec.frame_samples])
del self.audio_buffer[:self.codec.frame_samples]
# Compress with Codec2
compressed_frame = self.codec.encode(frame_audio)
if not compressed_frame:
continue
# Encrypt frame
encrypted = self._encrypt_voice_frame(compressed_frame)
# Add FEC
protected = self._add_fec(encrypted)
# Modulate to audio
audio_signal = self.modem.modulate(protected, add_preamble=True)
modulated_audio.append(audio_signal)
if modulated_audio:
if HAS_NUMPY:
return np.concatenate(modulated_audio)
else:
# Concatenate array.array objects
result = array.array('f')
for audio in modulated_audio:
result.extend(audio)
return result
return None
def process_voice_output(self, modulated_audio):
"""
Process received audio: demodulate, decrypt, and decompress.
Args:
modulated_audio: Received FSK-modulated audio
Returns:
Decoded PCM audio samples (numpy array or array.array)
"""
# Demodulate
data, confidence = self.modem.demodulate(modulated_audio)
if confidence < 0.5:
print(f"{YELLOW}[VOICE]{RESET} Low demodulation confidence: {confidence:.2f}")
return None
# Remove FEC
frame_data = self._remove_fec(data)
if not frame_data:
return None
# Decrypt
compressed_frame = self._decrypt_voice_frame(frame_data)
if not compressed_frame:
return None
# Decompress
audio_samples = self.codec.decode(compressed_frame)
return audio_samples
def _encrypt_voice_frame(self, frame: Codec2Frame) -> bytes:
"""Encrypt a voice frame using ChaCha20-CTR."""
if not self.protocol.hkdf_key:
raise ValueError("No encryption key available")
# Prepare frame data
frame_data = struct.pack('<BIH',
frame.mode,
frame.frame_number,
len(frame.bits)
) + frame.bits
# Generate IV for this frame (ChaCha20 needs 16 bytes)
iv = struct.pack('<Q', self.voice_iv_counter) + b'\x00' * 8 # 8 + 8 = 16 bytes
self.voice_iv_counter += 1
# Encrypt using ChaCha20
from encryption import chacha20_encrypt
key = bytes.fromhex(self.protocol.hkdf_key)
encrypted = chacha20_encrypt(frame_data, key, iv)
# Add sequence number and IV hint
return struct.pack('<HQ', self.voice_sequence, self.voice_iv_counter) + encrypted
def _decrypt_voice_frame(self, data: bytes) -> Optional[Codec2Frame]:
"""Decrypt a voice frame."""
if len(data) < 10:
return None
# Extract sequence and IV hint
sequence, iv_hint = struct.unpack('<HQ', data[:10])
encrypted = data[10:]
# Generate IV (16 bytes for ChaCha20)
iv = struct.pack('<Q', iv_hint) + b'\x00' * 8
# Decrypt
from encryption import chacha20_decrypt
key = bytes.fromhex(self.protocol.hkdf_key)
try:
decrypted = chacha20_decrypt(encrypted, key, iv)
# Parse frame
mode, frame_num, bits_len = struct.unpack('<BIH', decrypted[:7])
bits = decrypted[7:7+bits_len]
return Codec2Frame(
mode=Codec2Mode(mode),
bits=bits,
timestamp=0, # Will be set by caller
frame_number=frame_num
)
except Exception as e:
print(f"{RED}[VOICE]{RESET} Decryption failed: {e}")
return None
def _add_fec(self, data: bytes) -> bytes:
"""Add forward error correction."""
# Simple repetition code (3x) for testing
# In production: use convolutional code or LDPC
fec_data = bytearray()
for byte in data:
# Repeat each byte 3 times
fec_data.extend([byte, byte, byte])
return bytes(fec_data)
def _remove_fec(self, data: bytes) -> Optional[bytes]:
"""Remove FEC and correct errors."""
if len(data) % 3 != 0:
return None
corrected = bytearray()
for i in range(0, len(data), 3):
# Majority voting
votes = [data[i], data[i+1], data[i+2]]
byte_value = max(set(votes), key=votes.count)
corrected.append(byte_value)
return bytes(corrected)
# Example usage
if __name__ == "__main__":
# Test Codec2 wrapper
print(f"\n{BLUE}=== Testing Codec2 Wrapper ==={RESET}")
codec = Codec2Wrapper(Codec2Mode.MODE_1200)
# Generate test audio
if HAS_NUMPY:
t = np.linspace(0, 0.04, 320) # 40ms at 8kHz
test_audio = (np.sin(2 * np.pi * 440 * t) * 16384).astype(np.int16)
else:
test_audio = array.array('h')
for i in range(320):
t = i * 0.04 / 320
value = int(math.sin(2 * math.pi * 440 * t) * 16384)
test_audio.append(value)
# Encode
frame = codec.encode(test_audio)
print(f"Encoded frame: {len(frame.bits)} bytes")
# Decode
decoded = codec.decode(frame)
print(f"Decoded audio: {len(decoded)} samples")
# Test FSK modem
print(f"\n{BLUE}=== Testing FSK Modem ==={RESET}")
modem = FSKModem()
# Test data
test_data = b"Hello, secure voice!"
# Modulate
modulated = modem.modulate(test_data)
print(f"Modulated: {len(modulated)} samples ({len(modulated)/8000:.2f}s)")
# Demodulate
demodulated, confidence = modem.demodulate(modulated)
print(f"Demodulated: {demodulated}")
print(f"Confidence: {confidence:.2%}")
print(f"Match: {demodulated == test_data}")

Binary file not shown.

Binary file not shown.

Binary file not shown.

View File

@ -1,4 +1,4 @@
<mxfile host="app.diagrams.net" agent="Mozilla/5.0 (X11; Linux x86_64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/134.0.0.0 Safari/537.36" version="26.1.3" pages="2">
<mxfile host="Electron" agent="Mozilla/5.0 (X11; Linux x86_64) AppleWebKit/537.36 (KHTML, like Gecko) draw.io/26.0.16 Chrome/132.0.6834.196 Electron/34.2.0 Safari/537.36" version="26.0.16" pages="4">
<diagram id="C5RBs43oDa-KdzZeNtuy" name="Logique">
<mxGraphModel dx="735" dy="407" grid="1" gridSize="10" guides="1" tooltips="1" connect="1" arrows="1" fold="1" page="1" pageScale="1" pageWidth="827" pageHeight="1169" math="0" shadow="0">
<root>
@ -259,8 +259,16 @@
</root>
</mxGraphModel>
</diagram>
<diagram id="4Sb7mgJDpsadGym-U4wz" name="Echanges">
<mxGraphModel dx="1195" dy="683" grid="1" gridSize="10" guides="1" tooltips="1" connect="1" arrows="1" fold="1" page="1" pageScale="1" pageWidth="850" pageHeight="1100" math="0" shadow="0">
<diagram id="c7L-flsM9ZWaCx455Pfy" name="Transport Layer - 0">
<mxGraphModel dx="1434" dy="835" grid="1" gridSize="10" guides="1" tooltips="1" connect="1" arrows="1" fold="1" page="1" pageScale="1" pageWidth="850" pageHeight="1100" math="0" shadow="0">
<root>
<mxCell id="0" />
<mxCell id="1" parent="0" />
</root>
</mxGraphModel>
</diagram>
<diagram id="4Sb7mgJDpsadGym-U4wz" name="Protocol Layer - 0">
<mxGraphModel dx="1434" dy="835" grid="1" gridSize="10" guides="1" tooltips="1" connect="1" arrows="1" fold="1" page="1" pageScale="1" pageWidth="850" pageHeight="1100" math="0" shadow="0">
<root>
<mxCell id="0" />
<mxCell id="1" parent="0" />
@ -287,7 +295,7 @@
<mxCell id="n3lF8vaYaHAhAfaeaFZn-2" value="Version" style="swimlane;whiteSpace=wrap;html=1;" parent="1" vertex="1">
<mxGeometry x="305" y="130" width="58.75" height="80" as="geometry" />
</mxCell>
<mxCell id="pWkGvNQAXuiST1IiWYlx-1" value="(0-128)" style="text;html=1;align=center;verticalAlign=middle;whiteSpace=wrap;rounded=0;" vertex="1" parent="n3lF8vaYaHAhAfaeaFZn-2">
<mxCell id="pWkGvNQAXuiST1IiWYlx-1" value="(0-128)" style="text;html=1;align=center;verticalAlign=middle;whiteSpace=wrap;rounded=0;" parent="n3lF8vaYaHAhAfaeaFZn-2" vertex="1">
<mxGeometry x="3.75" y="30" width="51.25" height="25" as="geometry" />
</mxCell>
<mxCell id="n3lF8vaYaHAhAfaeaFZn-4" value="Checksum" style="swimlane;whiteSpace=wrap;html=1;" parent="1" vertex="1">
@ -506,61 +514,292 @@
<mxCell id="_H5URFloX_BVB2BL7kO6-16" value="= (180b ~ 212b) + yyy" style="text;html=1;align=center;verticalAlign=middle;whiteSpace=wrap;rounded=0;" parent="1" vertex="1">
<mxGeometry x="465" y="1285" width="130" height="30" as="geometry" />
</mxCell>
<mxCell id="pWkGvNQAXuiST1IiWYlx-2" value="Cypher" style="swimlane;whiteSpace=wrap;html=1;" vertex="1" parent="1">
<mxCell id="pWkGvNQAXuiST1IiWYlx-2" value="Cypher" style="swimlane;whiteSpace=wrap;html=1;" parent="1" vertex="1">
<mxGeometry x="375" y="130" width="58.75" height="80" as="geometry" />
</mxCell>
<mxCell id="pWkGvNQAXuiST1IiWYlx-3" value="(0-16)" style="text;html=1;align=center;verticalAlign=middle;whiteSpace=wrap;rounded=0;" vertex="1" parent="pWkGvNQAXuiST1IiWYlx-2">
<mxCell id="pWkGvNQAXuiST1IiWYlx-3" value="(0-16)" style="text;html=1;align=center;verticalAlign=middle;whiteSpace=wrap;rounded=0;" parent="pWkGvNQAXuiST1IiWYlx-2" vertex="1">
<mxGeometry x="3.75" y="30" width="51.25" height="25" as="geometry" />
</mxCell>
<mxCell id="pWkGvNQAXuiST1IiWYlx-4" value="4b" style="text;html=1;align=center;verticalAlign=middle;whiteSpace=wrap;rounded=0;" vertex="1" parent="1">
<mxCell id="pWkGvNQAXuiST1IiWYlx-4" value="4b" style="text;html=1;align=center;verticalAlign=middle;whiteSpace=wrap;rounded=0;" parent="1" vertex="1">
<mxGeometry x="375" y="210" width="55" height="30" as="geometry" />
</mxCell>
<mxCell id="pWkGvNQAXuiST1IiWYlx-5" value="Cypher" style="swimlane;whiteSpace=wrap;html=1;" vertex="1" parent="1">
<mxCell id="pWkGvNQAXuiST1IiWYlx-5" value="Cypher" style="swimlane;whiteSpace=wrap;html=1;" parent="1" vertex="1">
<mxGeometry x="600" y="290" width="58.75" height="60" as="geometry" />
</mxCell>
<mxCell id="pWkGvNQAXuiST1IiWYlx-6" value="(0-16)" style="text;html=1;align=center;verticalAlign=middle;whiteSpace=wrap;rounded=0;" vertex="1" parent="pWkGvNQAXuiST1IiWYlx-5">
<mxCell id="pWkGvNQAXuiST1IiWYlx-6" value="(0-16)" style="text;html=1;align=center;verticalAlign=middle;whiteSpace=wrap;rounded=0;" parent="pWkGvNQAXuiST1IiWYlx-5" vertex="1">
<mxGeometry x="3.75" y="30" width="51.25" height="25" as="geometry" />
</mxCell>
<mxCell id="pWkGvNQAXuiST1IiWYlx-7" value="4b" style="text;html=1;align=center;verticalAlign=middle;whiteSpace=wrap;rounded=0;" vertex="1" parent="1">
<mxCell id="pWkGvNQAXuiST1IiWYlx-7" value="4b" style="text;html=1;align=center;verticalAlign=middle;whiteSpace=wrap;rounded=0;" parent="1" vertex="1">
<mxGeometry x="601.88" y="350" width="55" height="30" as="geometry" />
</mxCell>
<mxCell id="pWkGvNQAXuiST1IiWYlx-8" value="status" style="swimlane;whiteSpace=wrap;html=1;" vertex="1" parent="1">
<mxCell id="pWkGvNQAXuiST1IiWYlx-8" value="status" style="swimlane;whiteSpace=wrap;html=1;" parent="1" vertex="1">
<mxGeometry x="425" y="1170" width="65" height="60" as="geometry" />
</mxCell>
<mxCell id="pWkGvNQAXuiST1IiWYlx-9" value="CRC ?" style="text;html=1;align=center;verticalAlign=middle;whiteSpace=wrap;rounded=0;" vertex="1" parent="pWkGvNQAXuiST1IiWYlx-8">
<mxCell id="pWkGvNQAXuiST1IiWYlx-9" value="CRC ?" style="text;html=1;align=center;verticalAlign=middle;whiteSpace=wrap;rounded=0;" parent="pWkGvNQAXuiST1IiWYlx-8" vertex="1">
<mxGeometry x="2.5" y="25" width="60" height="30" as="geometry" />
</mxCell>
<mxCell id="pWkGvNQAXuiST1IiWYlx-10" value="4b" style="text;html=1;align=center;verticalAlign=middle;whiteSpace=wrap;rounded=0;" vertex="1" parent="1">
<mxCell id="pWkGvNQAXuiST1IiWYlx-10" value="4b" style="text;html=1;align=center;verticalAlign=middle;whiteSpace=wrap;rounded=0;" parent="1" vertex="1">
<mxGeometry x="428.75" y="1230" width="55" height="30" as="geometry" />
</mxCell>
<mxCell id="pWkGvNQAXuiST1IiWYlx-11" value="iv" style="swimlane;whiteSpace=wrap;html=1;" vertex="1" parent="1">
<mxCell id="pWkGvNQAXuiST1IiWYlx-11" value="iv" style="swimlane;whiteSpace=wrap;html=1;" parent="1" vertex="1">
<mxGeometry x="505" y="1170" width="65" height="60" as="geometry" />
</mxCell>
<mxCell id="pWkGvNQAXuiST1IiWYlx-12" value="random&lt;div&gt;(+Z)&lt;/div&gt;" style="text;html=1;align=center;verticalAlign=middle;whiteSpace=wrap;rounded=0;" vertex="1" parent="pWkGvNQAXuiST1IiWYlx-11">
<mxCell id="pWkGvNQAXuiST1IiWYlx-12" value="random&lt;div&gt;(+Z)&lt;/div&gt;" style="text;html=1;align=center;verticalAlign=middle;whiteSpace=wrap;rounded=0;" parent="pWkGvNQAXuiST1IiWYlx-11" vertex="1">
<mxGeometry x="2.5" y="25" width="60" height="30" as="geometry" />
</mxCell>
<mxCell id="pWkGvNQAXuiST1IiWYlx-13" value="BBB b" style="text;html=1;align=center;verticalAlign=middle;whiteSpace=wrap;rounded=0;" vertex="1" parent="1">
<mxCell id="pWkGvNQAXuiST1IiWYlx-13" value="BBB b" style="text;html=1;align=center;verticalAlign=middle;whiteSpace=wrap;rounded=0;" parent="1" vertex="1">
<mxGeometry x="193" y="1330" width="55" height="30" as="geometry" />
</mxCell>
<mxCell id="pWkGvNQAXuiST1IiWYlx-14" value="MAC" style="swimlane;whiteSpace=wrap;html=1;fillColor=#008a00;fontColor=#ffffff;strokeColor=#005700;" vertex="1" parent="1">
<mxCell id="pWkGvNQAXuiST1IiWYlx-14" value="MAC" style="swimlane;whiteSpace=wrap;html=1;fillColor=#008a00;fontColor=#ffffff;strokeColor=#005700;" parent="1" vertex="1">
<mxGeometry x="286.13" y="1270" width="63.25" height="60" as="geometry" />
</mxCell>
<mxCell id="pWkGvNQAXuiST1IiWYlx-15" value="AEAD" style="text;html=1;align=center;verticalAlign=middle;whiteSpace=wrap;rounded=0;" vertex="1" parent="pWkGvNQAXuiST1IiWYlx-14">
<mxCell id="pWkGvNQAXuiST1IiWYlx-15" value="AEAD" style="text;html=1;align=center;verticalAlign=middle;whiteSpace=wrap;rounded=0;" parent="pWkGvNQAXuiST1IiWYlx-14" vertex="1">
<mxGeometry x="1.6199999999999992" y="25" width="60" height="30" as="geometry" />
</mxCell>
<mxCell id="pWkGvNQAXuiST1IiWYlx-16" value="128b" style="text;html=1;align=center;verticalAlign=middle;whiteSpace=wrap;rounded=0;" vertex="1" parent="1">
<mxCell id="pWkGvNQAXuiST1IiWYlx-16" value="128b" style="text;html=1;align=center;verticalAlign=middle;whiteSpace=wrap;rounded=0;" parent="1" vertex="1">
<mxGeometry x="290.25" y="1330" width="55" height="30" as="geometry" />
</mxCell>
<mxCell id="pWkGvNQAXuiST1IiWYlx-17" value="Green = clear data" style="text;html=1;align=center;verticalAlign=middle;whiteSpace=wrap;rounded=0;fillColor=#008a00;fontColor=#ffffff;strokeColor=#005700;" vertex="1" parent="1">
<mxCell id="pWkGvNQAXuiST1IiWYlx-17" value="Green = clear data" style="text;html=1;align=center;verticalAlign=middle;whiteSpace=wrap;rounded=0;fillColor=#008a00;fontColor=#ffffff;strokeColor=#005700;" parent="1" vertex="1">
<mxGeometry x="10" y="1170" width="110" height="30" as="geometry" />
</mxCell>
<mxCell id="pWkGvNQAXuiST1IiWYlx-18" value="&lt;font style=&quot;color: light-dark(rgb(0, 0, 0), rgb(255, 255, 255));&quot;&gt;White = additional data&lt;/font&gt;" style="text;html=1;align=center;verticalAlign=middle;whiteSpace=wrap;rounded=0;fillColor=none;strokeColor=light-dark(#6C8EBF,#FFFFFF);" vertex="1" parent="1">
<mxCell id="pWkGvNQAXuiST1IiWYlx-18" value="&lt;font style=&quot;color: light-dark(rgb(0, 0, 0), rgb(255, 255, 255));&quot;&gt;White = additional data&lt;/font&gt;" style="text;html=1;align=center;verticalAlign=middle;whiteSpace=wrap;rounded=0;fillColor=none;strokeColor=light-dark(#6C8EBF,#FFFFFF);" parent="1" vertex="1">
<mxGeometry y="1220" width="130" height="30" as="geometry" />
</mxCell>
<mxCell id="pWkGvNQAXuiST1IiWYlx-19" value="Blue = encrypted data" style="text;html=1;align=center;verticalAlign=middle;whiteSpace=wrap;rounded=0;fillColor=#0050ef;fontColor=#ffffff;strokeColor=#001DBC;" vertex="1" parent="1">
<mxCell id="pWkGvNQAXuiST1IiWYlx-19" value="Blue = encrypted data" style="text;html=1;align=center;verticalAlign=middle;whiteSpace=wrap;rounded=0;fillColor=#0050ef;fontColor=#ffffff;strokeColor=#001DBC;" parent="1" vertex="1">
<mxGeometry x="10" y="1270" width="110" height="30" as="geometry" />
</mxCell>
</root>
</mxGraphModel>
</diagram>
<diagram name="Protocol Layer - 1" id="_rkrwzJg5buKJxYS8faK">
<mxGraphModel dx="1062" dy="1719" grid="1" gridSize="10" guides="1" tooltips="1" connect="1" arrows="1" fold="1" page="1" pageScale="1" pageWidth="850" pageHeight="1100" math="0" shadow="0">
<root>
<mxCell id="0ZE-dMPOFneTTZtpNr96-0" />
<mxCell id="0ZE-dMPOFneTTZtpNr96-1" parent="0ZE-dMPOFneTTZtpNr96-0" />
<mxCell id="0ZE-dMPOFneTTZtpNr96-2" value="" style="html=1;shadow=0;dashed=0;align=center;verticalAlign=middle;shape=mxgraph.arrows2.arrow;dy=0;dx=10;notch=0;" vertex="1" parent="0ZE-dMPOFneTTZtpNr96-1">
<mxGeometry x="160" y="120" width="260" height="120" as="geometry" />
</mxCell>
<mxCell id="0ZE-dMPOFneTTZtpNr96-3" value="&lt;font style=&quot;color: rgb(255, 65, 27);&quot;&gt;&lt;b&gt;ALICE&amp;nbsp; (INITIATOR)&lt;/b&gt;&lt;/font&gt;" style="shape=umlLifeline;perimeter=lifelinePerimeter;whiteSpace=wrap;html=1;container=1;dropTarget=0;collapsible=0;recursiveResize=0;outlineConnect=0;portConstraint=eastwest;newEdgeStyle={&quot;curved&quot;:0,&quot;rounded&quot;:0};participant=umlEntity;strokeWidth=2;" vertex="1" parent="0ZE-dMPOFneTTZtpNr96-1">
<mxGeometry x="120" y="40" width="40" height="3110" as="geometry" />
</mxCell>
<mxCell id="0ZE-dMPOFneTTZtpNr96-4" value="&lt;font&gt;BOB&lt;/font&gt;" style="shape=umlLifeline;perimeter=lifelinePerimeter;whiteSpace=wrap;html=1;container=1;dropTarget=0;collapsible=0;recursiveResize=0;outlineConnect=0;portConstraint=eastwest;newEdgeStyle={&quot;curved&quot;:0,&quot;rounded&quot;:0};participant=umlEntity;strokeWidth=2;" vertex="1" parent="0ZE-dMPOFneTTZtpNr96-1">
<mxGeometry x="690" y="40" width="40" height="3110" as="geometry" />
</mxCell>
<mxCell id="0ZE-dMPOFneTTZtpNr96-5" value="PING" style="text;html=1;align=center;verticalAlign=middle;resizable=0;points=[];autosize=1;strokeColor=none;fillColor=none;fontSize=23;" vertex="1" parent="0ZE-dMPOFneTTZtpNr96-1">
<mxGeometry x="385" y="65" width="80" height="40" as="geometry" />
</mxCell>
<mxCell id="0ZE-dMPOFneTTZtpNr96-8" value="Version" style="swimlane;whiteSpace=wrap;html=1;" vertex="1" parent="0ZE-dMPOFneTTZtpNr96-1">
<mxGeometry x="171.25" y="130" width="58.75" height="80" as="geometry" />
</mxCell>
<mxCell id="0ZE-dMPOFneTTZtpNr96-9" value="(0-128)" style="text;html=1;align=center;verticalAlign=middle;whiteSpace=wrap;rounded=0;" vertex="1" parent="0ZE-dMPOFneTTZtpNr96-8">
<mxGeometry x="3.75" y="30" width="51.25" height="25" as="geometry" />
</mxCell>
<mxCell id="0ZE-dMPOFneTTZtpNr96-12" value="" style="html=1;shadow=0;dashed=0;align=center;verticalAlign=middle;shape=mxgraph.arrows2.arrow;dy=0;dx=10;notch=0;rotation=-180;" vertex="1" parent="0ZE-dMPOFneTTZtpNr96-1">
<mxGeometry x="350" y="280" width="340" height="190" as="geometry" />
</mxCell>
<mxCell id="0ZE-dMPOFneTTZtpNr96-13" value="Timestamp" style="swimlane;whiteSpace=wrap;html=1;" vertex="1" parent="0ZE-dMPOFneTTZtpNr96-1">
<mxGeometry x="380" y="290" width="90" height="60" as="geometry">
<mxRectangle x="210" y="130" width="80" height="30" as="alternateBounds" />
</mxGeometry>
</mxCell>
<mxCell id="0ZE-dMPOFneTTZtpNr96-14" value="timestamp" style="text;html=1;align=center;verticalAlign=middle;whiteSpace=wrap;rounded=0;fontSize=10;strokeWidth=1;" vertex="1" parent="0ZE-dMPOFneTTZtpNr96-13">
<mxGeometry x="11.25" y="27.5" width="67.5" height="25" as="geometry" />
</mxCell>
<mxCell id="0ZE-dMPOFneTTZtpNr96-15" value="Version" style="swimlane;whiteSpace=wrap;html=1;" vertex="1" parent="0ZE-dMPOFneTTZtpNr96-1">
<mxGeometry x="479.76" y="290" width="58.75" height="60" as="geometry" />
</mxCell>
<mxCell id="0ZE-dMPOFneTTZtpNr96-16" value="0" style="text;html=1;align=center;verticalAlign=middle;whiteSpace=wrap;rounded=0;" vertex="1" parent="0ZE-dMPOFneTTZtpNr96-15">
<mxGeometry y="25" width="60" height="30" as="geometry" />
</mxCell>
<mxCell id="0ZE-dMPOFneTTZtpNr96-19" value="Answer" style="swimlane;whiteSpace=wrap;html=1;" vertex="1" parent="0ZE-dMPOFneTTZtpNr96-1">
<mxGeometry x="548.76" y="290" width="57.5" height="60" as="geometry" />
</mxCell>
<mxCell id="0ZE-dMPOFneTTZtpNr96-20" value="&lt;div&gt;YES&lt;/div&gt;&lt;div&gt;NO&lt;br&gt;&lt;/div&gt;" style="text;html=1;align=center;verticalAlign=middle;whiteSpace=wrap;rounded=0;" vertex="1" parent="0ZE-dMPOFneTTZtpNr96-1">
<mxGeometry x="533.76" y="315" width="53.75" height="30" as="geometry" />
</mxCell>
<mxCell id="0ZE-dMPOFneTTZtpNr96-21" value="HANDSHAKE" style="text;html=1;align=center;verticalAlign=middle;resizable=0;points=[];autosize=1;strokeColor=none;fillColor=none;fontSize=23;" vertex="1" parent="0ZE-dMPOFneTTZtpNr96-1">
<mxGeometry x="350" y="510" width="170" height="40" as="geometry" />
</mxCell>
<mxCell id="0ZE-dMPOFneTTZtpNr96-22" value="" style="html=1;shadow=0;dashed=0;align=center;verticalAlign=middle;shape=mxgraph.arrows2.arrow;dy=0;dx=10;notch=0;" vertex="1" parent="0ZE-dMPOFneTTZtpNr96-1">
<mxGeometry x="160" y="570" width="410" height="220" as="geometry" />
</mxCell>
<mxCell id="0ZE-dMPOFneTTZtpNr96-23" value="Clé éphémère" style="swimlane;whiteSpace=wrap;html=1;" vertex="1" parent="0ZE-dMPOFneTTZtpNr96-1">
<mxGeometry x="170" y="580" width="105" height="80" as="geometry">
<mxRectangle x="210" y="130" width="80" height="30" as="alternateBounds" />
</mxGeometry>
</mxCell>
<mxCell id="0ZE-dMPOFneTTZtpNr96-24" value="Clé (publique) générée aléatoirement" style="text;html=1;align=center;verticalAlign=middle;whiteSpace=wrap;rounded=0;fontSize=11;" vertex="1" parent="0ZE-dMPOFneTTZtpNr96-23">
<mxGeometry y="30" width="100" height="40" as="geometry" />
</mxCell>
<mxCell id="0ZE-dMPOFneTTZtpNr96-25" value="" style="swimlane;whiteSpace=wrap;html=1;" vertex="1" parent="0ZE-dMPOFneTTZtpNr96-1">
<mxGeometry x="285" y="580" width="105" height="80" as="geometry" />
</mxCell>
<mxCell id="0ZE-dMPOFneTTZtpNr96-29" value="" style="swimlane;whiteSpace=wrap;html=1;" vertex="1" parent="0ZE-dMPOFneTTZtpNr96-1">
<mxGeometry x="402.81" y="580" width="71.88" height="80" as="geometry" />
</mxCell>
<mxCell id="0ZE-dMPOFneTTZtpNr96-31" value="" style="html=1;shadow=0;dashed=0;align=center;verticalAlign=middle;shape=mxgraph.arrows2.arrow;dy=0;dx=10;notch=0;rotation=-180;" vertex="1" parent="0ZE-dMPOFneTTZtpNr96-1">
<mxGeometry x="285" y="830" width="410" height="180" as="geometry" />
</mxCell>
<mxCell id="0ZE-dMPOFneTTZtpNr96-32" value="Clé éphémère" style="swimlane;whiteSpace=wrap;html=1;" vertex="1" parent="0ZE-dMPOFneTTZtpNr96-1">
<mxGeometry x="305" y="840" width="105" height="80" as="geometry">
<mxRectangle x="210" y="130" width="80" height="30" as="alternateBounds" />
</mxGeometry>
</mxCell>
<mxCell id="0ZE-dMPOFneTTZtpNr96-33" value="Clé (publique) générée aléatoirement" style="text;html=1;align=center;verticalAlign=middle;whiteSpace=wrap;rounded=0;fontSize=11;" vertex="1" parent="0ZE-dMPOFneTTZtpNr96-32">
<mxGeometry y="30" width="100" height="40" as="geometry" />
</mxCell>
<mxCell id="0ZE-dMPOFneTTZtpNr96-34" value="" style="swimlane;whiteSpace=wrap;html=1;startSize=23;" vertex="1" parent="0ZE-dMPOFneTTZtpNr96-1">
<mxGeometry x="420" y="840" width="105" height="80" as="geometry" />
</mxCell>
<mxCell id="0ZE-dMPOFneTTZtpNr96-38" value="" style="swimlane;whiteSpace=wrap;html=1;" vertex="1" parent="0ZE-dMPOFneTTZtpNr96-1">
<mxGeometry x="537.81" y="840" width="71.88" height="80" as="geometry" />
</mxCell>
<mxCell id="0ZE-dMPOFneTTZtpNr96-40" value="Timestamp" style="swimlane;whiteSpace=wrap;html=1;" vertex="1" parent="0ZE-dMPOFneTTZtpNr96-1">
<mxGeometry x="182.5" y="690" width="80" height="70" as="geometry">
<mxRectangle x="210" y="130" width="80" height="30" as="alternateBounds" />
</mxGeometry>
</mxCell>
<mxCell id="0ZE-dMPOFneTTZtpNr96-41" value="timestamp" style="text;html=1;align=center;verticalAlign=middle;whiteSpace=wrap;rounded=0;fontSize=10;strokeWidth=1;" vertex="1" parent="0ZE-dMPOFneTTZtpNr96-40">
<mxGeometry x="6.25" y="32.5" width="67.5" height="25" as="geometry" />
</mxCell>
<mxCell id="0ZE-dMPOFneTTZtpNr96-42" value="Timestamp" style="swimlane;whiteSpace=wrap;html=1;" vertex="1" parent="0ZE-dMPOFneTTZtpNr96-1">
<mxGeometry x="606.25" y="930" width="80" height="70" as="geometry">
<mxRectangle x="210" y="130" width="80" height="30" as="alternateBounds" />
</mxGeometry>
</mxCell>
<mxCell id="0ZE-dMPOFneTTZtpNr96-43" value="timestamp" style="text;html=1;align=center;verticalAlign=middle;whiteSpace=wrap;rounded=0;fontSize=10;strokeWidth=1;" vertex="1" parent="0ZE-dMPOFneTTZtpNr96-42">
<mxGeometry x="6.25" y="32.5" width="67.5" height="25" as="geometry" />
</mxCell>
<mxCell id="0ZE-dMPOFneTTZtpNr96-44" value="" style="html=1;shadow=0;dashed=0;align=center;verticalAlign=middle;shape=mxgraph.arrows2.arrow;dy=0;dx=10;notch=0;" vertex="1" parent="0ZE-dMPOFneTTZtpNr96-1">
<mxGeometry x="160" y="1160" width="450" height="200" as="geometry" />
</mxCell>
<mxCell id="0ZE-dMPOFneTTZtpNr96-45" value="ENCRYPTED COMS" style="text;html=1;align=center;verticalAlign=middle;resizable=0;points=[];autosize=1;strokeColor=none;fillColor=none;fontSize=23;" vertex="1" parent="0ZE-dMPOFneTTZtpNr96-1">
<mxGeometry x="305" y="1100" width="240" height="40" as="geometry" />
</mxCell>
<mxCell id="0ZE-dMPOFneTTZtpNr96-47" value="7b" style="text;html=1;align=center;verticalAlign=middle;whiteSpace=wrap;rounded=0;" vertex="1" parent="0ZE-dMPOFneTTZtpNr96-1">
<mxGeometry x="170" y="210" width="60" height="30" as="geometry" />
</mxCell>
<mxCell id="0ZE-dMPOFneTTZtpNr96-49" value="= 48b" style="text;html=1;align=center;verticalAlign=middle;whiteSpace=wrap;rounded=0;" vertex="1" parent="0ZE-dMPOFneTTZtpNr96-1">
<mxGeometry x="350" y="210" width="60" height="30" as="geometry" />
</mxCell>
<mxCell id="0ZE-dMPOFneTTZtpNr96-50" value="16b" style="text;html=1;align=center;verticalAlign=middle;whiteSpace=wrap;rounded=0;" vertex="1" parent="0ZE-dMPOFneTTZtpNr96-1">
<mxGeometry x="393" y="350" width="60" height="30" as="geometry" />
</mxCell>
<mxCell id="0ZE-dMPOFneTTZtpNr96-51" value="7b" style="text;html=1;align=center;verticalAlign=middle;whiteSpace=wrap;rounded=0;" vertex="1" parent="0ZE-dMPOFneTTZtpNr96-1">
<mxGeometry x="479.13" y="350" width="60" height="30" as="geometry" />
</mxCell>
<mxCell id="0ZE-dMPOFneTTZtpNr96-52" value="1b" style="text;html=1;align=center;verticalAlign=middle;whiteSpace=wrap;rounded=0;" vertex="1" parent="0ZE-dMPOFneTTZtpNr96-1">
<mxGeometry x="545.51" y="350" width="60" height="30" as="geometry" />
</mxCell>
<mxCell id="0ZE-dMPOFneTTZtpNr96-54" value="= 32b" style="text;html=1;align=center;verticalAlign=middle;whiteSpace=wrap;rounded=0;" vertex="1" parent="0ZE-dMPOFneTTZtpNr96-1">
<mxGeometry x="465" y="395" width="60" height="30" as="geometry" />
</mxCell>
<mxCell id="0ZE-dMPOFneTTZtpNr96-55" value="264b" style="text;html=1;align=center;verticalAlign=middle;whiteSpace=wrap;rounded=0;" vertex="1" parent="0ZE-dMPOFneTTZtpNr96-1">
<mxGeometry x="193" y="660" width="60" height="30" as="geometry" />
</mxCell>
<mxCell id="0ZE-dMPOFneTTZtpNr96-56" value="512b" style="text;html=1;align=center;verticalAlign=middle;whiteSpace=wrap;rounded=0;" vertex="1" parent="0ZE-dMPOFneTTZtpNr96-1">
<mxGeometry x="307.5" y="660" width="60" height="30" as="geometry" />
</mxCell>
<mxCell id="0ZE-dMPOFneTTZtpNr96-57" value="256b" style="text;html=1;align=center;verticalAlign=middle;whiteSpace=wrap;rounded=0;" vertex="1" parent="0ZE-dMPOFneTTZtpNr96-1">
<mxGeometry x="409.38" y="660" width="60" height="30" as="geometry" />
</mxCell>
<mxCell id="0ZE-dMPOFneTTZtpNr96-59" value="16b" style="text;html=1;align=center;verticalAlign=middle;whiteSpace=wrap;rounded=0;" vertex="1" parent="0ZE-dMPOFneTTZtpNr96-1">
<mxGeometry x="192.5" y="760" width="60" height="30" as="geometry" />
</mxCell>
<mxCell id="0ZE-dMPOFneTTZtpNr96-60" value="=1096b" style="text;html=1;align=center;verticalAlign=middle;whiteSpace=wrap;rounded=0;" vertex="1" parent="0ZE-dMPOFneTTZtpNr96-1">
<mxGeometry x="315" y="750" width="60" height="30" as="geometry" />
</mxCell>
<mxCell id="0ZE-dMPOFneTTZtpNr96-61" value="=1096b" style="text;html=1;align=center;verticalAlign=middle;whiteSpace=wrap;rounded=0;" vertex="1" parent="0ZE-dMPOFneTTZtpNr96-1">
<mxGeometry x="327.5" y="970" width="60" height="30" as="geometry" />
</mxCell>
<mxCell id="0ZE-dMPOFneTTZtpNr96-66" value="nbretry" style="swimlane;whiteSpace=wrap;html=1;" vertex="1" parent="0ZE-dMPOFneTTZtpNr96-1">
<mxGeometry x="344.38" y="1170" width="65" height="60" as="geometry" />
</mxCell>
<mxCell id="0ZE-dMPOFneTTZtpNr96-67" value="y" style="text;html=1;align=center;verticalAlign=middle;whiteSpace=wrap;rounded=0;" vertex="1" parent="0ZE-dMPOFneTTZtpNr96-66">
<mxGeometry x="2.5" y="25" width="60" height="30" as="geometry" />
</mxCell>
<mxCell id="0ZE-dMPOFneTTZtpNr96-70" value="msg" style="swimlane;whiteSpace=wrap;html=1;fillColor=#0050ef;fontColor=#ffffff;strokeColor=#001DBC;" vertex="1" parent="0ZE-dMPOFneTTZtpNr96-1">
<mxGeometry x="187.5" y="1270" width="65" height="60" as="geometry" />
</mxCell>
<mxCell id="0ZE-dMPOFneTTZtpNr96-71" value="BBB" style="text;html=1;align=center;verticalAlign=middle;whiteSpace=wrap;rounded=0;" vertex="1" parent="0ZE-dMPOFneTTZtpNr96-70">
<mxGeometry x="2.5" y="30" width="60" height="30" as="geometry" />
</mxCell>
<mxCell id="0ZE-dMPOFneTTZtpNr96-73" value="8b" style="text;html=1;align=center;verticalAlign=middle;whiteSpace=wrap;rounded=0;" vertex="1" parent="0ZE-dMPOFneTTZtpNr96-1">
<mxGeometry x="349.38" y="1230" width="55" height="30" as="geometry" />
</mxCell>
<mxCell id="0ZE-dMPOFneTTZtpNr96-77" value="= (180b ~ 212b) + yyy" style="text;html=1;align=center;verticalAlign=middle;whiteSpace=wrap;rounded=0;" vertex="1" parent="0ZE-dMPOFneTTZtpNr96-1">
<mxGeometry x="465" y="1285" width="130" height="30" as="geometry" />
</mxCell>
<mxCell id="0ZE-dMPOFneTTZtpNr96-78" value="Cypher" style="swimlane;whiteSpace=wrap;html=1;" vertex="1" parent="0ZE-dMPOFneTTZtpNr96-1">
<mxGeometry x="240" y="130" width="58.75" height="80" as="geometry" />
</mxCell>
<mxCell id="0ZE-dMPOFneTTZtpNr96-79" value="(0-32)" style="text;html=1;align=center;verticalAlign=middle;whiteSpace=wrap;rounded=0;" vertex="1" parent="0ZE-dMPOFneTTZtpNr96-78">
<mxGeometry x="3.75" y="30" width="51.25" height="25" as="geometry" />
</mxCell>
<mxCell id="0ZE-dMPOFneTTZtpNr96-80" value="5b" style="text;html=1;align=center;verticalAlign=middle;whiteSpace=wrap;rounded=0;" vertex="1" parent="0ZE-dMPOFneTTZtpNr96-1">
<mxGeometry x="240" y="210" width="55" height="30" as="geometry" />
</mxCell>
<mxCell id="0ZE-dMPOFneTTZtpNr96-81" value="Cypher Offset" style="swimlane;whiteSpace=wrap;html=1;" vertex="1" parent="0ZE-dMPOFneTTZtpNr96-1">
<mxGeometry x="616.88" y="290" width="58.75" height="60" as="geometry" />
</mxCell>
<mxCell id="0ZE-dMPOFneTTZtpNr96-82" value="(0-8)" style="text;html=1;align=center;verticalAlign=middle;whiteSpace=wrap;rounded=0;" vertex="1" parent="0ZE-dMPOFneTTZtpNr96-81">
<mxGeometry x="3.75" y="30" width="51.25" height="25" as="geometry" />
</mxCell>
<mxCell id="0ZE-dMPOFneTTZtpNr96-83" value="4b" style="text;html=1;align=center;verticalAlign=middle;whiteSpace=wrap;rounded=0;" vertex="1" parent="0ZE-dMPOFneTTZtpNr96-1">
<mxGeometry x="618.76" y="350" width="55" height="30" as="geometry" />
</mxCell>
<mxCell id="0ZE-dMPOFneTTZtpNr96-84" value="status" style="swimlane;whiteSpace=wrap;html=1;" vertex="1" parent="0ZE-dMPOFneTTZtpNr96-1">
<mxGeometry x="425" y="1170" width="65" height="60" as="geometry" />
</mxCell>
<mxCell id="0ZE-dMPOFneTTZtpNr96-85" value="CRC ?" style="text;html=1;align=center;verticalAlign=middle;whiteSpace=wrap;rounded=0;" vertex="1" parent="0ZE-dMPOFneTTZtpNr96-84">
<mxGeometry x="2.5" y="25" width="60" height="30" as="geometry" />
</mxCell>
<mxCell id="0ZE-dMPOFneTTZtpNr96-86" value="4b" style="text;html=1;align=center;verticalAlign=middle;whiteSpace=wrap;rounded=0;" vertex="1" parent="0ZE-dMPOFneTTZtpNr96-1">
<mxGeometry x="428.75" y="1230" width="55" height="30" as="geometry" />
</mxCell>
<mxCell id="0ZE-dMPOFneTTZtpNr96-89" value="BBB b" style="text;html=1;align=center;verticalAlign=middle;whiteSpace=wrap;rounded=0;" vertex="1" parent="0ZE-dMPOFneTTZtpNr96-1">
<mxGeometry x="193" y="1330" width="55" height="30" as="geometry" />
</mxCell>
<mxCell id="0ZE-dMPOFneTTZtpNr96-90" value="MAC" style="swimlane;whiteSpace=wrap;html=1;fillColor=#008a00;fontColor=#ffffff;strokeColor=#005700;" vertex="1" parent="0ZE-dMPOFneTTZtpNr96-1">
<mxGeometry x="286.13" y="1270" width="63.25" height="60" as="geometry" />
</mxCell>
<mxCell id="0ZE-dMPOFneTTZtpNr96-91" value="AEAD" style="text;html=1;align=center;verticalAlign=middle;whiteSpace=wrap;rounded=0;" vertex="1" parent="0ZE-dMPOFneTTZtpNr96-90">
<mxGeometry x="1.6199999999999992" y="25" width="60" height="30" as="geometry" />
</mxCell>
<mxCell id="0ZE-dMPOFneTTZtpNr96-92" value="128b" style="text;html=1;align=center;verticalAlign=middle;whiteSpace=wrap;rounded=0;" vertex="1" parent="0ZE-dMPOFneTTZtpNr96-1">
<mxGeometry x="290.25" y="1330" width="55" height="30" as="geometry" />
</mxCell>
<mxCell id="0ZE-dMPOFneTTZtpNr96-93" value="Green = clear data" style="text;html=1;align=center;verticalAlign=middle;whiteSpace=wrap;rounded=0;fillColor=#008a00;fontColor=#ffffff;strokeColor=#005700;" vertex="1" parent="0ZE-dMPOFneTTZtpNr96-1">
<mxGeometry x="10" y="1170" width="110" height="30" as="geometry" />
</mxCell>
<mxCell id="0ZE-dMPOFneTTZtpNr96-94" value="&lt;font style=&quot;color: light-dark(rgb(0, 0, 0), rgb(255, 255, 255));&quot;&gt;White = additional data&lt;/font&gt;" style="text;html=1;align=center;verticalAlign=middle;whiteSpace=wrap;rounded=0;fillColor=none;strokeColor=light-dark(#6C8EBF,#FFFFFF);" vertex="1" parent="0ZE-dMPOFneTTZtpNr96-1">
<mxGeometry y="1220" width="130" height="30" as="geometry" />
</mxCell>
<mxCell id="0ZE-dMPOFneTTZtpNr96-95" value="Blue = encrypted data" style="text;html=1;align=center;verticalAlign=middle;whiteSpace=wrap;rounded=0;fillColor=#0050ef;fontColor=#ffffff;strokeColor=#001DBC;" vertex="1" parent="0ZE-dMPOFneTTZtpNr96-1">
<mxGeometry x="10" y="1270" width="110" height="30" as="geometry" />
</mxCell>
<mxCell id="el23RTDFL3Ay36EOE6FN-0" value="Quality" style="swimlane;whiteSpace=wrap;html=1;" vertex="1" parent="0ZE-dMPOFneTTZtpNr96-1">
<mxGeometry x="308.75" y="130" width="58.75" height="80" as="geometry" />
</mxCell>
<mxCell id="el23RTDFL3Ay36EOE6FN-1" value="(0-16)" style="text;html=1;align=center;verticalAlign=middle;whiteSpace=wrap;rounded=0;" vertex="1" parent="el23RTDFL3Ay36EOE6FN-0">
<mxGeometry x="3.75" y="30" width="51.25" height="25" as="geometry" />
</mxCell>
<mxCell id="el23RTDFL3Ay36EOE6FN-2" value="4b" style="text;html=1;align=center;verticalAlign=middle;whiteSpace=wrap;rounded=0;" vertex="1" parent="0ZE-dMPOFneTTZtpNr96-1">
<mxGeometry x="308.75" y="210" width="55" height="30" as="geometry" />
</mxCell>
<mxCell id="el23RTDFL3Ay36EOE6FN-3" value="4b" style="text;html=1;align=center;verticalAlign=middle;whiteSpace=wrap;rounded=0;" vertex="1" parent="0ZE-dMPOFneTTZtpNr96-1">
<mxGeometry x="616.88" y="440" width="55" height="30" as="geometry" />
</mxCell>
<mxCell id="el23RTDFL3Ay36EOE6FN-4" value="Quality" style="swimlane;whiteSpace=wrap;html=1;" vertex="1" parent="0ZE-dMPOFneTTZtpNr96-1">
<mxGeometry x="616.88" y="380" width="58.75" height="60" as="geometry" />
</mxCell>
<mxCell id="el23RTDFL3Ay36EOE6FN-5" value="(0-16)" style="text;html=1;align=center;verticalAlign=middle;whiteSpace=wrap;rounded=0;" vertex="1" parent="el23RTDFL3Ay36EOE6FN-4">
<mxGeometry x="3.75" y="30" width="51.25" height="25" as="geometry" />
</mxCell>
<mxCell id="1WmqBiAd3lf2sxgMsw2H-0" value="Best Case Scenario&lt;div&gt;Noise_XK_25519_ChaChaPoly_SHA256&lt;/div&gt;" style="text;html=1;align=center;verticalAlign=middle;whiteSpace=wrap;rounded=0;fontSize=25;fontStyle=1" vertex="1" parent="0ZE-dMPOFneTTZtpNr96-1">
<mxGeometry x="223" y="-20" width="405" height="30" as="geometry" />
</mxCell>
</root>
</mxGraphModel>
</diagram>
</mxfile>

View File

@ -0,0 +1,91 @@
import argparse
import threading
import sys
from noise_xk.session import NoiseXKSession
from noise_xk.transport import P2PTransport
from dissononce.dh.x25519.public import PublicKey
def main():
parser = argparse.ArgumentParser(prog="noise_xk")
parser.add_argument(
"--listen-port", type=int, required=True,
help="Port on which to bind+listen"
)
parser.add_argument(
"--peer-host", type=str, default="127.0.0.1",
help="Peer host to dial (default: 127.0.0.1)"
)
parser.add_argument(
"--peer-port", type=int, required=True,
help="Peer port to dial"
)
args = parser.parse_args()
# 1. Generate static keypair and print our static public key
kp = NoiseXKSession.generate_keypair()
# kp.public is a PublicKey; .data holds raw bytes
local_priv = kp.private # carried implicitly in NoiseXKSession
local_pub = kp.public
print(f"[My static pubkey:] {local_pub.data.hex()}")
# 2. Read peer pubkey from user input
peer_pubkey = None
while True:
line = input(">>> ").strip()
if line.startswith("peer_pubkey "):
hexstr = line.split(None, 1)[1]
try:
raw = bytes.fromhex(hexstr)
peer_pubkey = PublicKey(raw) # wrap raw bytes in PublicKey
break
except ValueError:
print("Invalid hex; please retry.")
else:
print("Use: peer_pubkey <hex>")
# 3. Establish P2P connection (race listen vs. dial)
transport = P2PTransport(
listen_port=args.listen_port,
peer_host=args.peer_host,
peer_port=args.peer_port
)
print(
f"Racing connect/listen on ports "
f"{args.listen_port}{args.peer_host}:{args.peer_port}"
)
sock, initiator = transport.connect()
print(f"Connected (initiator={initiator}); performing handshake…")
# 4. Perform Noise XK handshake
session = NoiseXKSession(kp, peer_pubkey)
session.handshake(sock, initiator)
print("Handshake complete! You can now type messages.")
# 5. Reader thread for incoming messages
def reader():
while True:
try:
pt = session.receive(sock)
print(f"\n< {pt.decode()}")
except Exception as e:
print(f"\n[Receive error ({type(e).__name__}): {e!r}]")
break
thread = threading.Thread(target=reader, daemon=True)
thread.start()
# 6. Main loop: send user input
try:
for line in sys.stdin:
text = line.rstrip("\n")
if not text:
continue
session.send(sock, text.encode())
except KeyboardInterrupt:
pass
finally:
sock.close()
if __name__ == "__main__":
main()

View File

@ -0,0 +1,179 @@
# noise_xk/session.py
import socket
import logging
from dissononce.processing.impl.handshakestate import HandshakeState
from dissononce.processing.impl.symmetricstate import SymmetricState
from dissononce.processing.impl.cipherstate import CipherState
from dissononce.processing.handshakepatterns.interactive.XK import XKHandshakePattern
from dissononce.cipher.chachapoly import ChaChaPolyCipher
from dissononce.dh.x25519.x25519 import X25519DH
from dissononce.dh.keypair import KeyPair
from dissononce.dh.x25519.public import PublicKey
from dissononce.hash.sha256 import SHA256Hash
# Configure root logger for debug output
logging.basicConfig(level=logging.DEBUG, format="%(message)s")
class NoiseXKSession:
@staticmethod
def generate_keypair() -> KeyPair:
"""
Generate a static X25519 KeyPair.
Returns:
KeyPair object with .private and .public attributes.
"""
return X25519DH().generate_keypair()
def __init__(self, local_kp: KeyPair, peer_pubkey: PublicKey):
"""
Initialize with our KeyPair and the peer's PublicKey.
"""
self.local_kp: KeyPair = local_kp
self.peer_pubkey: PublicKey = peer_pubkey
# Build the Noise handshake state (X25519 DH, ChaChaPoly cipher, SHA256 hash)
cipher = ChaChaPolyCipher()
dh = X25519DH()
hshash = SHA256Hash()
symmetric = SymmetricState(CipherState(cipher), hshash)
self._hs = HandshakeState(symmetric, dh)
self._send_cs = None # type: CipherState
self._recv_cs = None
def handshake(self, sock: socket.socket, initiator: bool) -> None:
"""
Perform the XK handshake over the socket. Branches on initiator/responder
so that each side reads or writes in the correct message order.
On completion, self._send_cs and self._recv_cs hold the two CipherStates.
"""
logging.debug(f"[handshake] start (initiator={initiator})")
# initialize with our KeyPair and their PublicKey
if initiator:
# initiator knows peers static out-of-band
self._hs.initialize(
XKHandshakePattern(),
True,
b'',
s=self.local_kp,
rs=self.peer_pubkey
)
else:
logging.debug("[handshake] responder initializing without rs")
# responder must NOT supply rs here
self._hs.initialize(
XKHandshakePattern(),
False,
b'',
s=self.local_kp
)
cs_pair = None
if initiator:
# 1) -> e
buf1 = bytearray()
cs_pair = self._hs.write_message(b'', buf1)
logging.debug(f"[-> e] {buf1.hex()}")
self._send_all(sock, buf1)
# 2) <- e, es, s, ss
msg2 = self._recv_all(sock)
logging.debug(f"[<- msg2] {msg2.hex()}")
self._hs.read_message(msg2, bytearray())
# 3) -> se (final)
buf3 = bytearray()
cs_pair = self._hs.write_message(b'', buf3)
logging.debug(f"[-> se] {buf3.hex()}")
self._send_all(sock, buf3)
else:
# 1) <- e
msg1 = self._recv_all(sock)
logging.debug(f"[<- e] {msg1.hex()}")
self._hs.read_message(msg1, bytearray())
# 2) -> e, es, s, ss
buf2 = bytearray()
cs_pair = self._hs.write_message(b'', buf2)
logging.debug(f"[-> msg2] {buf2.hex()}")
self._send_all(sock, buf2)
# 3) <- se (final)
msg3 = self._recv_all(sock)
logging.debug(f"[<- se] {msg3.hex()}")
cs_pair = self._hs.read_message(msg3, bytearray())
# on the final step, we must get exactly two CipherStates
if not cs_pair or len(cs_pair) != 2:
raise RuntimeError("Handshake did not complete properly")
cs0, cs1 = cs_pair
# the library returns (cs_encrypt_for_initiator, cs_decrypt_for_initiator)
if initiator:
# initiator: cs0 encrypts, cs1 decrypts
self._send_cs, self._recv_cs = cs0, cs1
else:
# responder must swap
self._send_cs, self._recv_cs = cs1, cs0
# dump the raw symmetric keys & nonces (if available)
self._dump_cipherstate("HANDSHAKE→ SEND", self._send_cs)
self._dump_cipherstate("HANDSHAKE→ RECV", self._recv_cs)
def send(self, sock: socket.socket, plaintext: bytes) -> None:
"""
Encrypt and send a message.
"""
if self._send_cs is None:
raise RuntimeError("Handshake not complete")
ct = self._send_cs.encrypt_with_ad(b'', plaintext)
logging.debug(f"[ENCRYPT] {ct.hex()}")
self._dump_cipherstate("SEND→ after encrypt", self._send_cs)
self._send_all(sock, ct)
def receive(self, sock: socket.socket) -> bytes:
"""
Receive and decrypt a message.
"""
if self._recv_cs is None:
raise RuntimeError("Handshake not complete")
ct = self._recv_all(sock)
logging.debug(f"[CIPHERTEXT] {ct.hex()}")
self._dump_cipherstate("RECV→ before decrypt", self._recv_cs)
pt = self._recv_cs.decrypt_with_ad(b'', ct)
logging.debug(f"[DECRYPT] {pt!r}")
return pt
def _send_all(self, sock: socket.socket, data: bytes) -> None:
# Length-prefix (2 bytes big-endian) + data
length = len(data).to_bytes(2, 'big')
sock.sendall(length + data)
def _recv_all(self, sock: socket.socket) -> bytes:
# Read 2-byte length prefix, then the payload
hdr = self._read_exact(sock, 2)
length = int.from_bytes(hdr, 'big')
return self._read_exact(sock, length)
@staticmethod
def _read_exact(sock: socket.socket, n: int) -> bytes:
buf = bytearray()
while len(buf) < n:
chunk = sock.recv(n - len(buf))
if not chunk:
raise ConnectionError("Socket closed during read")
buf.extend(chunk)
return bytes(buf)
def _dump_cipherstate(self, label: str, cs: CipherState) -> None:
"""
Print the symmetric key (cs._k) and nonce counter (cs._n) for inspection.
"""
key = cs._key
nonce = getattr(cs, "_n", None)
if isinstance(key, (bytes, bytearray)):
key_hex = key.hex()
else:
key_hex = repr(key)
logging.debug(f"[{label}] key={key_hex}")

View File

@ -0,0 +1,99 @@
import socket
import threading
import time
class P2PTransport:
def __init__(self, listen_port: int, peer_host: str, peer_port: int):
"""
Args:
listen_port: port to bind() and accept()
peer_host: host to dial()
peer_port: port to dial()
"""
self.listen_port = listen_port
self.peer_host = peer_host
self.peer_port = peer_port
def connect(self) -> (socket.socket, bool):
"""
Race bind+listen vs. dial:
- If dial succeeds first, return (sock, True) # we are initiator
- If accept succeeds first, return (sock, False) # we are responder
"""
server = socket.socket(socket.AF_INET, socket.SOCK_STREAM)
server.setsockopt(socket.SOL_SOCKET, socket.SO_REUSEADDR, 1)
server.bind(('0.0.0.0', self.listen_port))
server.listen(1)
result = {}
event = threading.Event()
lock = threading.Lock()
def accept_thread():
try:
conn, _ = server.accept()
with lock:
if not event.is_set():
result['sock'] = conn
result['initiator'] = False
event.set()
except Exception:
pass
def dial_thread():
sock = socket.socket(socket.AF_INET, socket.SOCK_STREAM)
sock.settimeout(1.0)
while not event.is_set():
try:
sock.connect((self.peer_host, self.peer_port))
with lock:
if not event.is_set():
result['sock'] = sock
result['initiator'] = True
event.set()
return
except (ConnectionRefusedError, socket.timeout):
time.sleep(0.1)
except Exception:
break
t1 = threading.Thread(target=accept_thread, daemon=True)
t2 = threading.Thread(target=dial_thread, daemon=True)
t1.start()
t2.start()
event.wait()
sock, initiator = result['sock'], result['initiator']
# close the listening socket—weve got our P2P link
server.close()
# ensure this socket is in blocking mode (no lingering timeouts)
sock.settimeout(None)
return sock, initiator
def send_packet(self, sock: socket.socket, data: bytes) -> None:
"""
Send a 2-byte big-endian length prefix followed by data.
"""
length = len(data).to_bytes(2, 'big')
sock.sendall(length + data)
def recv_packet(self, sock: socket.socket) -> bytes:
"""
Receive a 2-byte length prefix, then that many payload bytes.
"""
hdr = self._read_exact(sock, 2)
length = int.from_bytes(hdr, 'big')
return self._read_exact(sock, length)
@staticmethod
def _read_exact(sock: socket.socket, n: int) -> bytes:
buf = bytearray()
while len(buf) < n:
chunk = sock.recv(n - len(buf))
if not chunk:
raise ConnectionError("Socket closed during read")
buf.extend(chunk)
return bytes(buf)
def close(self, sock: socket.socket) -> None:
sock.close()

View File

@ -1,430 +0,0 @@
import time
import threading
import queue
from typing import Optional, Dict, Any, List, Callable, Tuple
# ANSI colors for logging
RED = "\033[91m"
GREEN = "\033[92m"
YELLOW = "\033[93m"
BLUE = "\033[94m"
RESET = "\033[0m"
class AutoModeConfig:
"""Configuration parameters for the automatic mode behavior."""
def __init__(self):
# Ping behavior
self.ping_response_accept = True # Whether to accept incoming pings
self.ping_auto_initiate = False # Whether to initiate pings when connected
self.ping_retry_count = 3 # Number of ping retries
self.ping_retry_delay = 5.0 # Seconds between ping retries
self.ping_timeout = 10.0 # Seconds to wait for ping response
self.preferred_cipher = 0 # 0=AES-GCM, 1=ChaCha20-Poly1305
# Handshake behavior
self.handshake_retry_count = 3 # Number of handshake retries
self.handshake_retry_delay = 5.0 # Seconds between handshake retries
self.handshake_timeout = 10.0 # Seconds to wait for handshake
# Messaging behavior
self.auto_message_enabled = False # Whether to auto-send messages
self.message_interval = 10.0 # Seconds between auto messages
self.message_content = "Hello, secure world!" # Default message
# General behavior
self.active_mode = False # If true, initiates protocol instead of waiting
class AutoMode:
"""
Manages automated behavior for the Icing protocol.
Handles automatic progression through the protocol stages:
1. Connection setup
2. Ping/discovery
3. Key exchange
4. Encrypted communication
"""
def __init__(self, protocol_interface):
"""
Initialize the AutoMode manager.
Args:
protocol_interface: An object implementing the required protocol methods
"""
self.protocol = protocol_interface
self.config = AutoModeConfig()
self.active = False
self.state = "idle"
# Message queue for automated sending
self.message_queue = queue.Queue()
# Tracking variables
self.ping_attempts = 0
self.handshake_attempts = 0
self.last_action_time = 0
self.timer_tasks = [] # List of active timer tasks (for cleanup)
def start(self):
"""Start the automatic mode."""
if self.active:
return
self.active = True
self.state = "idle"
self.ping_attempts = 0
self.handshake_attempts = 0
self.last_action_time = time.time()
self._log_info("Automatic mode started")
# Start in active mode if configured
if self.config.active_mode and self.protocol.connections:
self._start_ping_sequence()
def stop(self):
"""Stop the automatic mode and clean up any pending tasks."""
if not self.active:
return
# Cancel any pending timers
for timer in self.timer_tasks:
if timer.is_alive():
timer.cancel()
self.timer_tasks = []
self.active = False
self.state = "idle"
self._log_info("Automatic mode stopped")
def handle_connection_established(self):
"""Called when a new connection is established."""
if not self.active:
return
self._log_info("Connection established")
# If in active mode, start pinging
if self.config.active_mode:
self._start_ping_sequence()
def handle_ping_received(self, index: int):
"""
Handle a received ping request.
Args:
index: Index of the ping request in the protocol's inbound message queue
"""
if not self.active or not self._is_valid_message_index(index):
return
self._log_info(f"Ping request received (index={index})")
# Automatically respond to ping if configured to accept
if self.config.ping_response_accept:
self._log_info(f"Auto-responding to ping with accept={self.config.ping_response_accept}")
try:
# Schedule the response with a small delay to simulate real behavior
timer = threading.Timer(0.5, self._respond_to_ping, args=[index])
timer.daemon = True
timer.start()
self.timer_tasks.append(timer)
except Exception as e:
self._log_error(f"Failed to auto-respond to ping: {e}")
def handle_ping_response_received(self, accepted: bool):
"""
Handle a received ping response.
Args:
accepted: Whether the ping was accepted
"""
if not self.active:
return
self.ping_attempts = 0 # Reset ping attempts counter
if accepted:
self._log_info("Ping accepted! Proceeding with handshake")
# Send handshake if not already done
if self.state != "handshake_sent":
self._ensure_ephemeral_keys()
self._start_handshake_sequence()
else:
self._log_info("Ping rejected by peer. Stopping auto-protocol sequence.")
self.state = "idle"
def handle_handshake_received(self, index: int):
"""
Handle a received handshake.
Args:
index: Index of the handshake in the protocol's inbound message queue
"""
if not self.active or not self._is_valid_message_index(index):
return
self._log_info(f"Handshake received (index={index})")
try:
# Ensure we have ephemeral keys
self._ensure_ephemeral_keys()
# Process the handshake (compute ECDH)
self.protocol.generate_ecdhe(index)
# Derive HKDF key
self.protocol.derive_hkdf()
# If we haven't sent our handshake yet, send it
if self.state != "handshake_sent":
timer = threading.Timer(0.5, self.protocol.send_handshake)
timer.daemon = True
timer.start()
self.timer_tasks.append(timer)
self.state = "handshake_sent"
else:
self.state = "key_exchange_complete"
# Start sending queued messages if auto messaging is enabled
if self.config.auto_message_enabled:
self._start_message_sequence()
except Exception as e:
self._log_error(f"Failed to process handshake: {e}")
def handle_encrypted_received(self, index: int):
"""
Handle a received encrypted message.
Args:
index: Index of the encrypted message in the protocol's inbound message queue
"""
if not self.active or not self._is_valid_message_index(index):
return
# Try to decrypt automatically
try:
plaintext = self.protocol.decrypt_received_message(index)
self._log_info(f"Auto-decrypted message: {plaintext}")
except Exception as e:
self._log_error(f"Failed to auto-decrypt message: {e}")
def queue_message(self, message: str):
"""
Add a message to the auto-send queue.
Args:
message: Message text to send
"""
self.message_queue.put(message)
self._log_info(f"Message queued for sending: {message}")
# If we're in the right state, start sending messages
if self.active and self.state == "key_exchange_complete" and self.config.auto_message_enabled:
self._process_message_queue()
def _start_ping_sequence(self):
"""Start the ping sequence to discover the peer."""
if self.ping_attempts >= self.config.ping_retry_count:
self._log_warning(f"Maximum ping attempts ({self.config.ping_retry_count}) reached")
self.state = "idle"
return
self.state = "pinging"
self.ping_attempts += 1
self._log_info(f"Sending ping request (attempt {self.ping_attempts}/{self.config.ping_retry_count})")
try:
self.protocol.send_ping_request(self.config.preferred_cipher)
self.last_action_time = time.time()
# Schedule next ping attempt if needed
timer = threading.Timer(
self.config.ping_retry_delay,
self._check_ping_response
)
timer.daemon = True
timer.start()
self.timer_tasks.append(timer)
except Exception as e:
self._log_error(f"Failed to send ping: {e}")
def _check_ping_response(self):
"""Check if we got a ping response, retry if not."""
if not self.active or self.state != "pinging":
return
# If we've waited long enough for a response, retry
if time.time() - self.last_action_time >= self.config.ping_timeout:
self._log_warning("No ping response received, retrying")
self._start_ping_sequence()
def _respond_to_ping(self, index: int):
"""
Respond to a ping request.
Args:
index: Index of the ping request in the inbound messages
"""
if not self.active or not self._is_valid_message_index(index):
return
try:
answer = 1 if self.config.ping_response_accept else 0
self.protocol.respond_to_ping(index, answer)
if answer == 1:
# If we accepted, we should expect a handshake
self.state = "accepted_ping"
self._ensure_ephemeral_keys()
# Set a timer to send our handshake if we don't receive one
timer = threading.Timer(
self.config.handshake_timeout,
self._check_handshake_received
)
timer.daemon = True
timer.start()
self.timer_tasks.append(timer)
self.last_action_time = time.time()
except Exception as e:
self._log_error(f"Failed to respond to ping: {e}")
def _check_handshake_received(self):
"""Check if we've received a handshake after accepting a ping."""
if not self.active or self.state != "accepted_ping":
return
# If we've waited long enough and haven't received a handshake, initiate one
if time.time() - self.last_action_time >= self.config.handshake_timeout:
self._log_warning("No handshake received after accepting ping, initiating handshake")
self._start_handshake_sequence()
def _start_handshake_sequence(self):
"""Start the handshake sequence."""
if self.handshake_attempts >= self.config.handshake_retry_count:
self._log_warning(f"Maximum handshake attempts ({self.config.handshake_retry_count}) reached")
self.state = "idle"
return
self.state = "handshake_sent"
self.handshake_attempts += 1
self._log_info(f"Sending handshake (attempt {self.handshake_attempts}/{self.config.handshake_retry_count})")
try:
self.protocol.send_handshake()
self.last_action_time = time.time()
# Schedule handshake retry check
timer = threading.Timer(
self.config.handshake_retry_delay,
self._check_handshake_response
)
timer.daemon = True
timer.start()
self.timer_tasks.append(timer)
except Exception as e:
self._log_error(f"Failed to send handshake: {e}")
def _check_handshake_response(self):
"""Check if we've completed the key exchange, retry handshake if not."""
if not self.active or self.state != "handshake_sent":
return
# If we've waited long enough for a response, retry
if time.time() - self.last_action_time >= self.config.handshake_timeout:
self._log_warning("No handshake response received, retrying")
self._start_handshake_sequence()
def _start_message_sequence(self):
"""Start the automated message sending sequence."""
if not self.config.auto_message_enabled:
return
self._log_info("Starting automated message sequence")
# Add the default message if queue is empty
if self.message_queue.empty():
self.message_queue.put(self.config.message_content)
# Start processing the queue
self._process_message_queue()
def _process_message_queue(self):
"""Process messages in the queue and send them."""
if not self.active or self.state != "key_exchange_complete" or not self.config.auto_message_enabled:
return
if not self.message_queue.empty():
message = self.message_queue.get()
self._log_info(f"Sending queued message: {message}")
try:
self.protocol.send_encrypted_message(message)
# Schedule next message send
timer = threading.Timer(
self.config.message_interval,
self._process_message_queue
)
timer.daemon = True
timer.start()
self.timer_tasks.append(timer)
except Exception as e:
self._log_error(f"Failed to send queued message: {e}")
# Put the message back in the queue
self.message_queue.put(message)
def _ensure_ephemeral_keys(self):
"""Ensure ephemeral keys are generated if needed."""
if not hasattr(self.protocol, 'ephemeral_pubkey') or self.protocol.ephemeral_pubkey is None:
self._log_info("Generating ephemeral keys")
self.protocol.generate_ephemeral_keys()
def _is_valid_message_index(self, index: int) -> bool:
"""
Check if a message index is valid in the protocol's inbound_messages queue.
Args:
index: The index to check
Returns:
bool: True if the index is valid, False otherwise
"""
if not hasattr(self.protocol, 'inbound_messages'):
self._log_error("Protocol has no inbound_messages attribute")
return False
if index < 0 or index >= len(self.protocol.inbound_messages):
self._log_error(f"Invalid message index: {index}")
return False
return True
# Helper methods for logging
def _log_info(self, message: str):
print(f"{BLUE}[AUTO]{RESET} {message}")
if hasattr(self, 'verbose_logging') and self.verbose_logging:
state_info = f"(state={self.state})"
if 'pinging' in self.state and hasattr(self, 'ping_attempts'):
state_info += f", attempts={self.ping_attempts}/{self.config.ping_retry_count}"
elif 'handshake' in self.state and hasattr(self, 'handshake_attempts'):
state_info += f", attempts={self.handshake_attempts}/{self.config.handshake_retry_count}"
print(f"{BLUE}[AUTO-DETAIL]{RESET} {state_info}")
def _log_warning(self, message: str):
print(f"{YELLOW}[AUTO-WARN]{RESET} {message}")
if hasattr(self, 'verbose_logging') and self.verbose_logging:
timer_info = f"Active timers: {len(self.timer_tasks)}"
print(f"{YELLOW}[AUTO-WARN-DETAIL]{RESET} {timer_info}")
def _log_error(self, message: str):
print(f"{RED}[AUTO-ERROR]{RESET} {message}")
if hasattr(self, 'verbose_logging') and self.verbose_logging:
print(f"{RED}[AUTO-ERROR-DETAIL]{RESET} Current state: {self.state}, Active: {self.active}")

View File

@ -1,328 +0,0 @@
import sys
import argparse
import shlex
from protocol import IcingProtocol
RED = "\033[91m"
GREEN = "\033[92m"
YELLOW = "\033[93m"
BLUE = "\033[94m"
MAGENTA = "\033[95m"
CYAN = "\033[96m"
RESET = "\033[0m"
def print_help():
"""Display all available commands."""
print(f"\n{YELLOW}=== Available Commands ==={RESET}")
print(f"\n{CYAN}Basic Protocol Commands:{RESET}")
print(" help - Show this help message")
print(" peer_id <hex_pubkey> - Set peer identity public key")
print(" connect <port> - Connect to a peer at the specified port")
print(" show_state - Display current protocol state")
print(" exit - Exit the program")
print(f"\n{CYAN}Manual Protocol Operation:{RESET}")
print(" generate_ephemeral_keys - Generate ephemeral ECDH keys")
print(" send_ping [cipher] - Send PING request (cipher: 0=AES-GCM, 1=ChaCha20-Poly1305, default: 0)")
print(" respond_ping <index> <0|1> - Respond to a PING (0=reject, 1=accept)")
print(" send_handshake - Send handshake with ephemeral keys")
print(" generate_ecdhe <index> - Process handshake at specified index")
print(" derive_hkdf - Derive encryption key using HKDF")
print(" send_encrypted <plaintext> - Encrypt and send a message")
print(" decrypt <index> - Decrypt received message at index")
print(f"\n{CYAN}Automatic Mode Commands:{RESET}")
print(" auto start - Start automatic mode")
print(" auto stop - Stop automatic mode")
print(" auto status - Show current auto mode status and configuration")
print(" auto config <param> <value> - Configure auto mode parameters")
print(" auto config list - Show all configurable parameters")
print(" auto message <text> - Queue message for automatic sending")
print(" auto passive - Configure as passive peer (responds to pings but doesn't initiate)")
print(" auto active - Configure as active peer (initiates protocol)")
print(" auto log - Toggle detailed logging for auto mode")
print(f"\n{CYAN}Debugging Commands:{RESET}")
print(" debug_message <index> - Display detailed information about a message in the queue")
print(f"\n{CYAN}Legacy Commands:{RESET}")
print(" auto_responder <on|off> - Enable/disable legacy auto responder (deprecated)")
def main():
protocol = IcingProtocol()
print(f"{YELLOW}\n======================================")
print(" Icing Protocol - Secure Communication ")
print("======================================\n" + RESET)
print(f"Listening on port: {protocol.local_port}")
print(f"Your identity public key (hex): {protocol.identity_pubkey.hex()}")
print_help()
while True:
try:
line = input(f"{MAGENTA}Cmd>{RESET} ").strip()
except EOFError:
break
if not line:
continue
parts = shlex.split(line) # Handle quoted arguments properly
cmd = parts[0].lower()
try:
# Basic commands
if cmd == "exit":
protocol.stop()
break
elif cmd == "help":
print_help()
elif cmd == "show_state":
protocol.show_state()
elif cmd == "peer_id":
if len(parts) != 2:
print(f"{RED}[ERROR]{RESET} Usage: peer_id <hex_pubkey>")
continue
try:
protocol.set_peer_identity(parts[1])
except ValueError as e:
print(f"{RED}[ERROR]{RESET} Invalid public key: {e}")
elif cmd == "connect":
if len(parts) != 2:
print(f"{RED}[ERROR]{RESET} Usage: connect <port>")
continue
try:
port = int(parts[1])
protocol.connect_to_peer(port)
except ValueError:
print(f"{RED}[ERROR]{RESET} Invalid port number.")
except Exception as e:
print(f"{RED}[ERROR]{RESET} Connection failed: {e}")
# Manual protocol operation
elif cmd == "generate_ephemeral_keys":
protocol.generate_ephemeral_keys()
elif cmd == "send_ping":
# Optional cipher parameter (0 = AES-GCM, 1 = ChaCha20-Poly1305)
cipher = 0 # Default to AES-GCM
if len(parts) >= 2:
try:
cipher = int(parts[1])
if cipher not in (0, 1):
print(f"{YELLOW}[WARNING]{RESET} Unsupported cipher code {cipher}. Using AES-GCM (0).")
cipher = 0
except ValueError:
print(f"{YELLOW}[WARNING]{RESET} Invalid cipher code. Using AES-GCM (0).")
protocol.send_ping_request(cipher)
elif cmd == "send_handshake":
protocol.send_handshake()
elif cmd == "respond_ping":
if len(parts) != 3:
print(f"{RED}[ERROR]{RESET} Usage: respond_ping <index> <0|1>")
continue
try:
idx = int(parts[1])
answer = int(parts[2])
if answer not in (0, 1):
print(f"{RED}[ERROR]{RESET} Answer must be 0 (reject) or 1 (accept).")
continue
protocol.respond_to_ping(idx, answer)
except ValueError:
print(f"{RED}[ERROR]{RESET} Index and answer must be integers.")
except Exception as e:
print(f"{RED}[ERROR]{RESET} Failed to respond to ping: {e}")
elif cmd == "generate_ecdhe":
if len(parts) != 2:
print(f"{RED}[ERROR]{RESET} Usage: generate_ecdhe <index>")
continue
try:
idx = int(parts[1])
protocol.generate_ecdhe(idx)
except ValueError:
print(f"{RED}[ERROR]{RESET} Index must be an integer.")
except Exception as e:
print(f"{RED}[ERROR]{RESET} Failed to process handshake: {e}")
elif cmd == "derive_hkdf":
try:
protocol.derive_hkdf()
except Exception as e:
print(f"{RED}[ERROR]{RESET} Failed to derive HKDF key: {e}")
elif cmd == "send_encrypted":
if len(parts) < 2:
print(f"{RED}[ERROR]{RESET} Usage: send_encrypted <plaintext>")
continue
plaintext = " ".join(parts[1:])
try:
protocol.send_encrypted_message(plaintext)
except Exception as e:
print(f"{RED}[ERROR]{RESET} Failed to send encrypted message: {e}")
elif cmd == "decrypt":
if len(parts) != 2:
print(f"{RED}[ERROR]{RESET} Usage: decrypt <index>")
continue
try:
idx = int(parts[1])
protocol.decrypt_received_message(idx)
except ValueError:
print(f"{RED}[ERROR]{RESET} Index must be an integer.")
except Exception as e:
print(f"{RED}[ERROR]{RESET} Failed to decrypt message: {e}")
# Debugging commands
elif cmd == "debug_message":
if len(parts) != 2:
print(f"{RED}[ERROR]{RESET} Usage: debug_message <index>")
continue
try:
idx = int(parts[1])
protocol.debug_message(idx)
except ValueError:
print(f"{RED}[ERROR]{RESET} Index must be an integer.")
except Exception as e:
print(f"{RED}[ERROR]{RESET} Failed to debug message: {e}")
# Automatic mode commands
elif cmd == "auto":
if len(parts) < 2:
print(f"{RED}[ERROR]{RESET} Usage: auto <command> [options]")
print("Available commands: start, stop, status, config, message, passive, active")
continue
subcmd = parts[1].lower()
if subcmd == "start":
protocol.start_auto_mode()
print(f"{GREEN}[AUTO]{RESET} Automatic mode started")
elif subcmd == "stop":
protocol.stop_auto_mode()
print(f"{GREEN}[AUTO]{RESET} Automatic mode stopped")
elif subcmd == "status":
config = protocol.get_auto_mode_config()
print(f"{YELLOW}=== Auto Mode Status ==={RESET}")
print(f"Active: {protocol.auto_mode.active}")
print(f"State: {protocol.auto_mode.state}")
print(f"\n{YELLOW}--- Configuration ---{RESET}")
for key, value in vars(config).items():
print(f" {key}: {value}")
elif subcmd == "config":
if len(parts) < 3:
print(f"{RED}[ERROR]{RESET} Usage: auto config <param> <value> or auto config list")
continue
if parts[2].lower() == "list":
config = protocol.get_auto_mode_config()
print(f"{YELLOW}=== Auto Mode Configuration Parameters ==={RESET}")
for key, value in vars(config).items():
print(f" {key} ({type(value).__name__}): {value}")
continue
if len(parts) != 4:
print(f"{RED}[ERROR]{RESET} Usage: auto config <param> <value>")
continue
param = parts[2]
value_str = parts[3]
# Convert the string value to the appropriate type
config = protocol.get_auto_mode_config()
if not hasattr(config, param):
print(f"{RED}[ERROR]{RESET} Unknown parameter: {param}")
print("Use 'auto config list' to see all available parameters")
continue
current_value = getattr(config, param)
try:
if isinstance(current_value, bool):
if value_str.lower() in ("true", "yes", "on", "1"):
value = True
elif value_str.lower() in ("false", "no", "off", "0"):
value = False
else:
raise ValueError(f"Boolean value must be true/false/yes/no/on/off/1/0")
elif isinstance(current_value, int):
value = int(value_str)
elif isinstance(current_value, float):
value = float(value_str)
elif isinstance(current_value, str):
value = value_str
else:
value = value_str # Default to string
protocol.configure_auto_mode(**{param: value})
print(f"{GREEN}[AUTO]{RESET} Set {param} = {value}")
except ValueError as e:
print(f"{RED}[ERROR]{RESET} Invalid value for {param}: {e}")
elif subcmd == "message":
if len(parts) < 3:
print(f"{RED}[ERROR]{RESET} Usage: auto message <text>")
continue
message = " ".join(parts[2:])
protocol.queue_auto_message(message)
print(f"{GREEN}[AUTO]{RESET} Message queued for sending: {message}")
elif subcmd == "passive":
# Configure as passive peer (responds but doesn't initiate)
protocol.configure_auto_mode(
ping_response_accept=True,
ping_auto_initiate=False,
active_mode=False
)
print(f"{GREEN}[AUTO]{RESET} Configured as passive peer")
elif subcmd == "active":
# Configure as active peer (initiates protocol)
protocol.configure_auto_mode(
ping_response_accept=True,
ping_auto_initiate=True,
active_mode=True
)
print(f"{GREEN}[AUTO]{RESET} Configured as active peer")
else:
print(f"{RED}[ERROR]{RESET} Unknown auto mode command: {subcmd}")
print("Available commands: start, stop, status, config, message, passive, active")
# Legacy commands
elif cmd == "auto_responder":
if len(parts) != 2:
print(f"{RED}[ERROR]{RESET} Usage: auto_responder <on|off>")
continue
val = parts[1].lower()
if val not in ("on", "off"):
print(f"{RED}[ERROR]{RESET} Value must be 'on' or 'off'.")
continue
protocol.enable_auto_responder(val == "on")
print(f"{YELLOW}[WARNING]{RESET} Using legacy auto responder. Consider using 'auto' commands instead.")
else:
print(f"{RED}[ERROR]{RESET} Unknown command: {cmd}")
print("Type 'help' for a list of available commands.")
except Exception as e:
print(f"{RED}[ERROR]{RESET} Command failed: {e}")
if __name__ == "__main__":
try:
main()
except KeyboardInterrupt:
print("\nExiting...")
except Exception as e:
print(f"{RED}[FATAL ERROR]{RESET} {e}")
sys.exit(1)

View File

@ -1,165 +0,0 @@
import os
from typing import Tuple
from cryptography.exceptions import InvalidSignature
from cryptography.hazmat.primitives import hashes, serialization
from cryptography.hazmat.primitives.asymmetric import ec, utils
from cryptography.hazmat.primitives.asymmetric.utils import decode_dss_signature, encode_dss_signature
def generate_identity_keys() -> Tuple[ec.EllipticCurvePrivateKey, bytes]:
"""
Generate an ECDSA (P-256) identity key pair.
Returns:
Tuple containing:
- private_key: EllipticCurvePrivateKey object
- public_key_bytes: Raw x||y format (64 bytes, 512 bits)
"""
private_key = ec.generate_private_key(ec.SECP256R1())
public_numbers = private_key.public_key().public_numbers()
x_bytes = public_numbers.x.to_bytes(32, byteorder='big')
y_bytes = public_numbers.y.to_bytes(32, byteorder='big')
pubkey_bytes = x_bytes + y_bytes # 64 bytes total
return private_key, pubkey_bytes
def load_peer_identity_key(pubkey_bytes: bytes) -> ec.EllipticCurvePublicKey:
"""
Convert a raw public key (64 bytes, x||y format) to a cryptography public key object.
Args:
pubkey_bytes: Raw 64-byte public key (x||y format)
Returns:
EllipticCurvePublicKey object
Raises:
ValueError: If the pubkey_bytes is not exactly 64 bytes
"""
if len(pubkey_bytes) != 64:
raise ValueError("Peer identity pubkey must be exactly 64 bytes (x||y).")
x_int = int.from_bytes(pubkey_bytes[:32], byteorder='big')
y_int = int.from_bytes(pubkey_bytes[32:], byteorder='big')
public_numbers = ec.EllipticCurvePublicNumbers(x_int, y_int, ec.SECP256R1())
return public_numbers.public_key()
def sign_data(private_key: ec.EllipticCurvePrivateKey, data: bytes) -> bytes:
"""
Sign data with ECDSA using a P-256 private key.
Args:
private_key: EllipticCurvePrivateKey for signing
data: Bytes to sign
Returns:
DER-encoded signature (variable length, up to ~70-72 bytes)
"""
signature = private_key.sign(data, ec.ECDSA(hashes.SHA256()))
return signature
def verify_signature(public_key: ec.EllipticCurvePublicKey, signature: bytes, data: bytes) -> bool:
"""
Verify a DER-encoded ECDSA signature.
Args:
public_key: EllipticCurvePublicKey for verification
signature: DER-encoded signature
data: Original signed data
Returns:
True if signature is valid, False otherwise
"""
try:
public_key.verify(signature, data, ec.ECDSA(hashes.SHA256()))
return True
except InvalidSignature:
return False
def get_ephemeral_keypair() -> Tuple[ec.EllipticCurvePrivateKey, bytes]:
"""
Generate an ephemeral ECDH key pair (P-256).
Returns:
Tuple containing:
- private_key: EllipticCurvePrivateKey object
- pubkey_bytes: Raw x||y format (64 bytes, 512 bits)
"""
private_key = ec.generate_private_key(ec.SECP256R1())
numbers = private_key.public_key().public_numbers()
x_bytes = numbers.x.to_bytes(32, 'big')
y_bytes = numbers.y.to_bytes(32, 'big')
return private_key, x_bytes + y_bytes # 64 bytes total
def compute_ecdh_shared_key(private_key: ec.EllipticCurvePrivateKey, peer_pubkey_bytes: bytes) -> bytes:
"""
Compute a shared secret using ECDH.
Args:
private_key: Local ECDH private key
peer_pubkey_bytes: Peer's ephemeral public key (64 bytes, raw x||y format)
Returns:
Shared secret bytes
Raises:
ValueError: If peer_pubkey_bytes is not 64 bytes
"""
if len(peer_pubkey_bytes) != 64:
raise ValueError("Peer public key must be 64 bytes (x||y format)")
x_int = int.from_bytes(peer_pubkey_bytes[:32], 'big')
y_int = int.from_bytes(peer_pubkey_bytes[32:], 'big')
# Create public key object from raw components
peer_public_numbers = ec.EllipticCurvePublicNumbers(x_int, y_int, ec.SECP256R1())
peer_public_key = peer_public_numbers.public_key()
# Perform key exchange
shared_key = private_key.exchange(ec.ECDH(), peer_public_key)
return shared_key
def der_to_raw(der_sig: bytes) -> bytes:
"""
Convert a DER-encoded ECDSA signature to a raw 64-byte signature (r||s).
Args:
der_sig: DER-encoded signature
Returns:
Raw 64-byte signature (r||s format), with each component padded to 32 bytes
"""
r, s = decode_dss_signature(der_sig)
r_bytes = r.to_bytes(32, byteorder='big')
s_bytes = s.to_bytes(32, byteorder='big')
return r_bytes + s_bytes
def raw_signature_to_der(raw_sig: bytes) -> bytes:
"""
Convert a raw signature (64 bytes, concatenated r||s) to DER-encoded signature.
Args:
raw_sig: Raw 64-byte signature (r||s format)
Returns:
DER-encoded signature
Raises:
ValueError: If raw_sig is not 64 bytes
"""
if len(raw_sig) != 64:
raise ValueError("Raw signature must be 64 bytes (r||s).")
r = int.from_bytes(raw_sig[:32], 'big')
s = int.from_bytes(raw_sig[32:], 'big')
return encode_dss_signature(r, s)

View File

@ -1,263 +0,0 @@
import os
import struct
from typing import Optional, Tuple
from cryptography.hazmat.primitives.ciphers.aead import AESGCM, ChaCha20Poly1305
class MessageHeader:
"""
Header of an encrypted message (18 bytes total):
Clear Text Section (4 bytes):
- flag: 16 bits (0xBEEF by default)
- data_len: 16 bits (length of encrypted payload excluding tag)
Associated Data (14 bytes):
- retry: 8 bits (retry counter)
- connection_status: 4 bits (e.g., CRC required) + 4 bits padding
- iv/messageID: 96 bits (12 bytes)
"""
def __init__(self, flag: int, data_len: int, retry: int, connection_status: int, iv: bytes):
if not (0 <= flag < 65536):
raise ValueError("Flag must fit in 16 bits (0..65535)")
if not (0 <= data_len < 65536):
raise ValueError("Data length must fit in 16 bits (0..65535)")
if not (0 <= retry < 256):
raise ValueError("Retry must fit in 8 bits (0..255)")
if not (0 <= connection_status < 16):
raise ValueError("Connection status must fit in 4 bits (0..15)")
if len(iv) != 12:
raise ValueError("IV must be 12 bytes (96 bits)")
self.flag = flag # 16 bits
self.data_len = data_len # 16 bits
self.retry = retry # 8 bits
self.connection_status = connection_status # 4 bits
self.iv = iv # 96 bits (12 bytes)
def pack(self) -> bytes:
"""Pack header into 18 bytes."""
# Pack flag and data_len (4 bytes)
header = struct.pack('>H H', self.flag, self.data_len)
# Pack retry and connection_status (2 bytes)
# connection_status in high 4 bits of second byte, 4 bits padding as zero
ad_byte = (self.connection_status & 0x0F) << 4
ad_packed = struct.pack('>B B', self.retry, ad_byte)
# Append IV (12 bytes)
return header + ad_packed + self.iv
def get_associated_data(self) -> bytes:
"""Get the associated data for AEAD encryption (retry, conn_status, iv)."""
# Pack retry and connection_status
ad_byte = (self.connection_status & 0x0F) << 4
ad_packed = struct.pack('>B B', self.retry, ad_byte)
# Append IV
return ad_packed + self.iv
@classmethod
def unpack(cls, data: bytes) -> 'MessageHeader':
"""Unpack 18 bytes into a MessageHeader object."""
if len(data) < 18:
raise ValueError(f"Header data too short: {len(data)} bytes, expected 18")
flag, data_len = struct.unpack('>H H', data[:4])
retry, ad_byte = struct.unpack('>B B', data[4:6])
connection_status = (ad_byte >> 4) & 0x0F
iv = data[6:18]
return cls(flag, data_len, retry, connection_status, iv)
class EncryptedMessage:
"""
Encrypted message packet format:
- Header (18 bytes):
* flag: 16 bits
* data_len: 16 bits
* retry: 8 bits
* connection_status: 4 bits (+ 4 bits padding)
* iv/messageID: 96 bits (12 bytes)
- Payload: variable length encrypted data
- Footer:
* Authentication tag: 128 bits (16 bytes)
* CRC32: 32 bits (4 bytes) - optional, based on connection_status
"""
def __init__(self, plaintext: bytes, key: bytes, flag: int = 0xBEEF,
retry: int = 0, connection_status: int = 0, iv: bytes = None,
cipher_type: int = 0):
self.plaintext = plaintext
self.key = key
self.flag = flag
self.retry = retry
self.connection_status = connection_status
self.iv = iv or generate_iv(initial=True)
self.cipher_type = cipher_type # 0 = AES-256-GCM, 1 = ChaCha20-Poly1305
# Will be set after encryption
self.ciphertext = None
self.tag = None
self.header = None
def encrypt(self) -> bytes:
"""Encrypt the plaintext and return the full encrypted message."""
# Create header with correct data_len (which will be set after encryption)
self.header = MessageHeader(
flag=self.flag,
data_len=0, # Will be updated after encryption
retry=self.retry,
connection_status=self.connection_status,
iv=self.iv
)
# Get associated data for AEAD
aad = self.header.get_associated_data()
# Encrypt using the appropriate cipher
if self.cipher_type == 0: # AES-256-GCM
cipher = AESGCM(self.key)
ciphertext_with_tag = cipher.encrypt(self.iv, self.plaintext, aad)
elif self.cipher_type == 1: # ChaCha20-Poly1305
cipher = ChaCha20Poly1305(self.key)
ciphertext_with_tag = cipher.encrypt(self.iv, self.plaintext, aad)
else:
raise ValueError(f"Unsupported cipher type: {self.cipher_type}")
# Extract ciphertext and tag
self.tag = ciphertext_with_tag[-16:]
self.ciphertext = ciphertext_with_tag[:-16]
# Update header with actual data length
self.header.data_len = len(self.ciphertext)
# Pack everything together
packed_header = self.header.pack()
# Check if CRC is required (based on connection_status)
if self.connection_status & 0x01: # Lowest bit indicates CRC required
import zlib
# Compute CRC32 of header + ciphertext + tag
crc = zlib.crc32(packed_header + self.ciphertext + self.tag) & 0xffffffff
crc_bytes = struct.pack('>I', crc)
return packed_header + self.ciphertext + self.tag + crc_bytes
else:
return packed_header + self.ciphertext + self.tag
@classmethod
def decrypt(cls, data: bytes, key: bytes, cipher_type: int = 0) -> Tuple[bytes, MessageHeader]:
"""
Decrypt an encrypted message and return the plaintext and header.
Args:
data: The full encrypted message
key: The encryption key
cipher_type: 0 for AES-256-GCM, 1 for ChaCha20-Poly1305
Returns:
Tuple of (plaintext, header)
"""
if len(data) < 18 + 16: # Header + minimum tag size
raise ValueError("Message too short")
# Extract header
header_bytes = data[:18]
header = MessageHeader.unpack(header_bytes)
# Get ciphertext and tag
data_len = header.data_len
ciphertext_start = 18
ciphertext_end = ciphertext_start + data_len
if ciphertext_end + 16 > len(data):
raise ValueError("Message length does not match header's data_len")
ciphertext = data[ciphertext_start:ciphertext_end]
tag = data[ciphertext_end:ciphertext_end + 16]
# Get associated data for AEAD
aad = header.get_associated_data()
# Combine ciphertext and tag for decryption
ciphertext_with_tag = ciphertext + tag
# Decrypt using the appropriate cipher
try:
if cipher_type == 0: # AES-256-GCM
cipher = AESGCM(key)
plaintext = cipher.decrypt(header.iv, ciphertext_with_tag, aad)
elif cipher_type == 1: # ChaCha20-Poly1305
cipher = ChaCha20Poly1305(key)
plaintext = cipher.decrypt(header.iv, ciphertext_with_tag, aad)
else:
raise ValueError(f"Unsupported cipher type: {cipher_type}")
return plaintext, header
except Exception as e:
raise ValueError(f"Decryption failed: {e}")
def generate_iv(initial: bool = False, previous_iv: bytes = None) -> bytes:
"""
Generate a 96-bit IV (12 bytes).
Args:
initial: If True, return a random IV
previous_iv: The previous IV to increment
Returns:
A new IV
"""
if initial or previous_iv is None:
return os.urandom(12) # 96 bits
else:
# Increment the previous IV by 1 modulo 2^96
iv_int = int.from_bytes(previous_iv, 'big')
iv_int = (iv_int + 1) % (1 << 96)
return iv_int.to_bytes(12, 'big')
# Convenience functions to match original API
def encrypt_message(plaintext: bytes, key: bytes, flag: int = 0xBEEF,
retry: int = 0, connection_status: int = 0,
iv: bytes = None, cipher_type: int = 0) -> bytes:
"""
Encrypt a message using the specified parameters.
Args:
plaintext: The data to encrypt
key: The encryption key (32 bytes for AES-256-GCM, 32 bytes for ChaCha20-Poly1305)
flag: 16-bit flag value (default: 0xBEEF)
retry: 8-bit retry counter
connection_status: 4-bit connection status
iv: Optional 96-bit IV (if None, a random one will be generated)
cipher_type: 0 for AES-256-GCM, 1 for ChaCha20-Poly1305
Returns:
The full encrypted message
"""
message = EncryptedMessage(
plaintext=plaintext,
key=key,
flag=flag,
retry=retry,
connection_status=connection_status,
iv=iv,
cipher_type=cipher_type
)
return message.encrypt()
def decrypt_message(message: bytes, key: bytes, cipher_type: int = 0) -> bytes:
"""
Decrypt a message.
Args:
message: The full encrypted message
key: The encryption key
cipher_type: 0 for AES-256-GCM, 1 for ChaCha20-Poly1305
Returns:
The decrypted plaintext
"""
plaintext, _ = EncryptedMessage.decrypt(message, key, cipher_type)
return plaintext

View File

@ -1,262 +0,0 @@
import os
import struct
import time
import zlib
import hashlib
from typing import Tuple, Optional
def crc32_of(data: bytes) -> int:
"""
Compute CRC-32 of 'data'.
"""
return zlib.crc32(data) & 0xffffffff
# ---------------------------------------------------------------------------
# PING REQUEST (new format)
# Fields (in order):
# - session_nonce: 129 bits (from the top 129 bits of 17 random bytes)
# - version: 7 bits
# - cipher: 4 bits (0 = AES-256-GCM, 1 = ChaCha20-poly1305; for now only 0 is used)
# - CRC: 32 bits
#
# Total bits: 129 + 7 + 4 + 32 = 172 bits. We pack into 22 bytes (176 bits) with 4 spare bits.
# ---------------------------------------------------------------------------
class PingRequest:
"""
PING REQUEST format (172 bits / 22 bytes):
- session_nonce: 129 bits (from top 129 bits of 17 random bytes)
- version: 7 bits
- cipher: 4 bits (0 = AES-256-GCM, 1 = ChaCha20-poly1305)
- CRC: 32 bits
"""
def __init__(self, version: int, cipher: int, session_nonce: bytes = None):
if not (0 <= version < 128):
raise ValueError("Version must fit in 7 bits (0..127)")
if not (0 <= cipher < 16):
raise ValueError("Cipher must fit in 4 bits (0..15)")
self.version = version
self.cipher = cipher
# Generate session nonce if not provided
if session_nonce is None:
# Generate 17 random bytes
nonce_full = os.urandom(17)
# Use top 129 bits
nonce_int_full = int.from_bytes(nonce_full, 'big')
nonce_129_int = nonce_int_full >> 7 # drop lowest 7 bits
self.session_nonce = nonce_129_int.to_bytes(17, 'big')
else:
if len(session_nonce) != 17:
raise ValueError("Session nonce must be 17 bytes (136 bits)")
self.session_nonce = session_nonce
def serialize(self) -> bytes:
"""Serialize the ping request into a 22-byte packet."""
# Convert session_nonce to integer (129 bits)
nonce_int = int.from_bytes(self.session_nonce, 'big')
# Pack fields: shift nonce left by 11 bits, add version and cipher
partial_int = (nonce_int << 11) | (self.version << 4) | (self.cipher & 0x0F)
# This creates 129+7+4 = 140 bits; pack into 18 bytes
partial_bytes = partial_int.to_bytes(18, 'big')
# Compute CRC over these 18 bytes
cval = crc32_of(partial_bytes)
# Combine partial data with 32-bit CRC
final_int = (int.from_bytes(partial_bytes, 'big') << 32) | cval
return final_int.to_bytes(22, 'big')
@classmethod
def deserialize(cls, data: bytes) -> Optional['PingRequest']:
"""Deserialize a 22-byte packet into a PingRequest object."""
if len(data) != 22:
return None
# Extract 176-bit integer
final_int = int.from_bytes(data, 'big')
# Extract CRC and verify
crc_in = final_int & 0xffffffff
partial_int = final_int >> 32 # 140 bits
partial_bytes = partial_int.to_bytes(18, 'big')
crc_calc = crc32_of(partial_bytes)
if crc_calc != crc_in:
return None
# Extract fields
cipher = partial_int & 0x0F
version = (partial_int >> 4) & 0x7F
nonce_129_int = partial_int >> 11 # 129 bits
session_nonce = nonce_129_int.to_bytes(17, 'big')
return cls(version, cipher, session_nonce)
# ---------------------------------------------------------------------------
# PING RESPONSE (new format)
# Fields:
# - timestamp: 32 bits (we take the lower 32 bits of the time in ms)
# - version: 7 bits
# - cipher: 4 bits
# - answer: 1 bit
# - CRC: 32 bits
#
# Total bits: 32 + 7 + 4 + 1 + 32 = 76 bits; pack into 10 bytes (80 bits) with 4 spare bits.
# ---------------------------------------------------------------------------
class PingResponse:
"""
PING RESPONSE format (76 bits / 10 bytes):
- timestamp: 32 bits (milliseconds since epoch, lower 32 bits)
- version: 7 bits
- cipher: 4 bits
- answer: 1 bit (0 = no, 1 = yes)
- CRC: 32 bits
"""
def __init__(self, version: int, cipher: int, answer: int, timestamp: int = None):
if not (0 <= version < 128):
raise ValueError("Version must fit in 7 bits")
if not (0 <= cipher < 16):
raise ValueError("Cipher must fit in 4 bits")
if answer not in (0, 1):
raise ValueError("Answer must be 0 or 1")
self.version = version
self.cipher = cipher
self.answer = answer
self.timestamp = timestamp or (int(time.time() * 1000) & 0xffffffff)
def serialize(self) -> bytes:
"""Serialize the ping response into a 10-byte packet."""
# Pack timestamp, version, cipher, answer: 32+7+4+1 = 44 bits
partial_val = (self.timestamp << (7+4+1)) | (self.version << (4+1)) | (self.cipher << 1) | self.answer
partial_bytes = partial_val.to_bytes(6, 'big') # 6 bytes = 48 bits, 4 spare bits
# Compute CRC
cval = crc32_of(partial_bytes)
# Combine with CRC
final_val = (int.from_bytes(partial_bytes, 'big') << 32) | cval
return final_val.to_bytes(10, 'big')
@classmethod
def deserialize(cls, data: bytes) -> Optional['PingResponse']:
"""Deserialize a 10-byte packet into a PingResponse object."""
if len(data) != 10:
return None
# Extract 80-bit integer
final_int = int.from_bytes(data, 'big')
# Extract CRC and verify
crc_in = final_int & 0xffffffff
partial_int = final_int >> 32 # 48 bits
partial_bytes = partial_int.to_bytes(6, 'big')
crc_calc = crc32_of(partial_bytes)
if crc_calc != crc_in:
return None
# Extract fields (discard 4 spare bits)
partial_int >>= 4 # now 44 bits
answer = partial_int & 0x01
cipher = (partial_int >> 1) & 0x0F
version = (partial_int >> (1+4)) & 0x7F
timestamp = partial_int >> (1+4+7)
return cls(version, cipher, answer, timestamp)
# =============================================================================
# 3) Handshake
# - 32-bit timestamp
# - 64-byte ephemeral pubkey (raw x||y = 512 bits)
# - 64-byte ephemeral signature (raw r||s = 512 bits)
# - 32-byte PFS hash (256 bits)
# - 32-bit CRC
# => total 4 + 64 + 64 + 32 + 4 = 168 bytes = 1344 bits
# =============================================================================
class Handshake:
"""
HANDSHAKE format (1344 bits / 168 bytes):
- timestamp: 32 bits
- ephemeral_pubkey: 512 bits (64 bytes, raw x||y format)
- ephemeral_signature: 512 bits (64 bytes, raw r||s format)
- pfs_hash: 256 bits (32 bytes)
- CRC: 32 bits
"""
def __init__(self, ephemeral_pubkey: bytes, ephemeral_signature: bytes, pfs_hash: bytes, timestamp: int = None):
if len(ephemeral_pubkey) != 64:
raise ValueError("ephemeral_pubkey must be 64 bytes (raw x||y)")
if len(ephemeral_signature) != 64:
raise ValueError("ephemeral_signature must be 64 bytes (raw r||s)")
if len(pfs_hash) != 32:
raise ValueError("pfs_hash must be 32 bytes")
self.ephemeral_pubkey = ephemeral_pubkey
self.ephemeral_signature = ephemeral_signature
self.pfs_hash = pfs_hash
self.timestamp = timestamp or (int(time.time() * 1000) & 0xffffffff)
def serialize(self) -> bytes:
"""Serialize the handshake into a 168-byte packet."""
# Pack timestamp and other fields
partial = struct.pack("!I", self.timestamp) + self.ephemeral_pubkey + self.ephemeral_signature + self.pfs_hash
# Compute CRC
cval = crc32_of(partial)
# Append CRC
return partial + struct.pack("!I", cval)
@classmethod
def deserialize(cls, data: bytes) -> Optional['Handshake']:
"""Deserialize a 168-byte packet into a Handshake object."""
if len(data) != 168:
return None
# Extract and verify CRC
partial = data[:-4]
crc_in = struct.unpack("!I", data[-4:])[0]
crc_calc = crc32_of(partial)
if crc_calc != crc_in:
return None
# Extract fields
timestamp = struct.unpack("!I", partial[:4])[0]
ephemeral_pubkey = partial[4:4+64]
ephemeral_signature = partial[68:68+64]
pfs_hash = partial[132:132+32]
return cls(ephemeral_pubkey, ephemeral_signature, pfs_hash, timestamp)
# =============================================================================
# 4) PFS Hash Helper
# If no previous session, return 32 zero bytes
# Otherwise, compute sha256(session_number || last_shared_secret).
# =============================================================================
def compute_pfs_hash(session_number: int, shared_secret_hex: str) -> bytes:
"""
Compute the PFS hash field for handshake messages:
- If no previous session (session_number < 0), return 32 zero bytes
- Otherwise, compute sha256(session_number || shared_secret)
"""
if session_number < 0:
return b"\x00" * 32
# Convert shared_secret_hex to raw bytes
secret_bytes = bytes.fromhex(shared_secret_hex)
# Pack session_number as 4 bytes
sn_bytes = struct.pack("!I", session_number)
# Compute hash
return hashlib.sha256(sn_bytes + secret_bytes).digest()

View File

@ -1,815 +0,0 @@
import random
import os
import time
import threading
from typing import List, Dict, Any, Optional, Tuple
from crypto_utils import (
generate_identity_keys,
load_peer_identity_key,
sign_data,
verify_signature,
get_ephemeral_keypair,
compute_ecdh_shared_key,
der_to_raw,
raw_signature_to_der
)
from messages import (
PingRequest, PingResponse, Handshake,
compute_pfs_hash
)
import transmission
from encryption import (
EncryptedMessage, MessageHeader,
generate_iv, encrypt_message, decrypt_message
)
from auto_mode import AutoMode, AutoModeConfig
# ANSI colors
RED = "\033[91m"
GREEN = "\033[92m"
YELLOW = "\033[93m"
BLUE = "\033[94m"
RESET = "\033[0m"
class IcingProtocol:
def __init__(self):
# Identity keys (each 512 bits when printed as hex of 64 bytes)
self.identity_privkey, self.identity_pubkey = generate_identity_keys()
# Peer identity for verifying ephemeral signatures
self.peer_identity_pubkey_obj = None
self.peer_identity_pubkey_bytes = None
# Ephemeral keys (our side)
self.ephemeral_privkey = None
self.ephemeral_pubkey = None
# Last computed shared secret (hex string)
self.shared_secret = None
# Derived HKDF key (hex string, 256 bits)
self.hkdf_key = None
# Negotiated cipher (0 = AES-256-GCM, 1 = ChaCha20-Poly1305)
self.cipher_type = 0
# For PFS: track per-peer session info (session number and last shared secret)
self.pfs_history: Dict[bytes, Tuple[int, str]] = {}
# Protocol flags
self.state = {
"ping_sent": False,
"ping_received": False,
"handshake_sent": False,
"handshake_received": False,
"key_exchange_complete": False
}
# Auto mode for automated protocol operation
self.auto_mode = AutoMode(self)
# Legacy auto-responder toggle (kept for backward compatibility)
self.auto_responder = False
# Active connections list
self.connections = []
# Inbound messages (each message is a dict with keys: type, raw, parsed, connection)
self.inbound_messages: List[Dict[str, Any]] = []
# Store the session nonce (17 bytes but only 129 bits are valid) from first sent or received PING
self.session_nonce: bytes = None
# Last used IV for encrypted messages
self.last_iv: bytes = None
self.local_port = random.randint(30000, 40000)
self.server_listener = transmission.ServerListener(
host="127.0.0.1",
port=self.local_port,
on_new_connection=self.on_new_connection,
on_data_received=self.on_data_received
)
self.server_listener.start()
# -------------------------------------------------------------------------
# Transport callbacks
# -------------------------------------------------------------------------
def on_new_connection(self, conn: transmission.PeerConnection):
print(f"{GREEN}[IcingProtocol]{RESET} New incoming connection.")
self.connections.append(conn)
# Notify auto mode
self.auto_mode.handle_connection_established()
def on_data_received(self, conn: transmission.PeerConnection, data: bytes):
bits_count = len(data) * 8
print(
f"{GREEN}[RECV]{RESET} {bits_count} bits from peer: {data.hex()[:60]}{'...' if len(data.hex()) > 60 else ''}")
# PING REQUEST (22 bytes)
if len(data) == 22:
ping_request = PingRequest.deserialize(data)
if ping_request:
self.state["ping_received"] = True
# If received cipher is not supported, force to 0 (AES-256-GCM)
if ping_request.cipher != 0 and ping_request.cipher != 1:
print(f"{YELLOW}[NOTICE]{RESET} Received PING with unsupported cipher ({ping_request.cipher}); forcing cipher to 0 in response.")
ping_request.cipher = 0
# Store cipher type for future encrypted messages
self.cipher_type = ping_request.cipher
# Store session nonce if not already set
if self.session_nonce is None:
self.session_nonce = ping_request.session_nonce
print(f"{YELLOW}[NOTICE]{RESET} Stored session nonce from received PING.")
index = len(self.inbound_messages)
msg = {
"type": "PING_REQUEST",
"raw": data,
"parsed": ping_request,
"connection": conn
}
self.inbound_messages.append(msg)
# Handle in auto mode (if active)
self.auto_mode.handle_ping_received(index)
# Legacy auto-responder (for backward compatibility)
if self.auto_responder and not self.auto_mode.active:
timer = threading.Timer(2.0, self._auto_respond_ping, args=[index])
timer.daemon = True
timer.start()
return
# PING RESPONSE (10 bytes)
elif len(data) == 10:
ping_response = PingResponse.deserialize(data)
if ping_response:
# Store negotiated cipher type
self.cipher_type = ping_response.cipher
index = len(self.inbound_messages)
msg = {
"type": "PING_RESPONSE",
"raw": data,
"parsed": ping_response,
"connection": conn
}
self.inbound_messages.append(msg)
# Notify auto mode (if active)
self.auto_mode.handle_ping_response_received(ping_response.answer == 1)
return
# HANDSHAKE message (168 bytes)
elif len(data) == 168:
handshake = Handshake.deserialize(data)
if handshake:
self.state["handshake_received"] = True
index = len(self.inbound_messages)
msg = {
"type": "HANDSHAKE",
"raw": data,
"parsed": handshake,
"connection": conn
}
self.inbound_messages.append(msg)
# Notify auto mode (if active)
self.auto_mode.handle_handshake_received(index)
# Legacy auto-responder
if self.auto_responder and not self.auto_mode.active:
timer = threading.Timer(2.0, self._auto_respond_handshake, args=[index])
timer.daemon = True
timer.start()
return
# Check if the message might be an encrypted message (e.g. header of 18 bytes at start)
elif len(data) >= 18:
# Try to parse header
try:
header = MessageHeader.unpack(data[:18])
# If header unpacking is successful and data length matches header expectations
expected_len = 18 + header.data_len + 16 # Header + payload + tag
# Check if CRC is included
has_crc = (header.connection_status & 0x01) != 0
if has_crc:
expected_len += 4 # Add CRC32 length
if len(data) >= expected_len:
index = len(self.inbound_messages)
msg = {
"type": "ENCRYPTED_MESSAGE",
"raw": data,
"parsed": header,
"connection": conn
}
self.inbound_messages.append(msg)
print(f"{YELLOW}[NOTICE]{RESET} Stored inbound ENCRYPTED_MESSAGE at index={index}.")
# Notify auto mode
self.auto_mode.handle_encrypted_received(index)
return
except Exception as e:
print(f"{RED}[ERROR]{RESET} Failed to parse message header: {e}")
# Otherwise, unrecognized/malformed message.
index = len(self.inbound_messages)
msg = {
"type": "UNKNOWN",
"raw": data,
"parsed": None,
"connection": conn
}
self.inbound_messages.append(msg)
print(f"{RED}[WARNING]{RESET} Unrecognized or malformed message stored at index={index}.")
# -------------------------------------------------------------------------
# HKDF Derivation
# -------------------------------------------------------------------------
def derive_hkdf(self):
"""
Derives a 256-bit key using HKDF.
Uses as input keying material (IKM) the shared secret from ECDH.
The salt is computed as SHA256(session_nonce || pfs_param), where:
- session_nonce is taken from self.session_nonce (17 bytes, 129 bits) or defaults to zeros.
- pfs_param is taken from the first inbound HANDSHAKE's pfs_hash field (32 bytes) or zeros.
"""
if not self.shared_secret:
print(f"{RED}[ERROR]{RESET} No shared secret available; cannot derive HKDF key.")
return
# IKM: shared secret converted from hex to bytes.
ikm = bytes.fromhex(self.shared_secret)
# Use stored session_nonce if available; otherwise default to zeros.
session_nonce = self.session_nonce if self.session_nonce is not None else (b"\x00" * 17)
# Determine pfs_param from first HANDSHAKE message (if any)
pfs_param = None
for msg in self.inbound_messages:
if msg["type"] == "HANDSHAKE":
try:
handshake = msg["parsed"]
pfs_param = handshake.pfs_hash
except Exception:
pfs_param = None
break
if pfs_param is None:
print(f"{RED}[WARNING]{RESET} No HANDSHAKE found; using 32 zero bytes for pfs_param.")
pfs_param = b"\x00" * 32 # 256-bit zeros
# Ensure both are bytes
if isinstance(session_nonce, str):
session_nonce = session_nonce.encode()
if isinstance(pfs_param, str):
pfs_param = pfs_param.encode()
from cryptography.hazmat.primitives import hashes
from cryptography.hazmat.primitives.kdf.hkdf import HKDF
hasher = hashes.Hash(hashes.SHA256())
hasher.update(session_nonce + pfs_param)
salt_value = hasher.finalize()
hkdf = HKDF(
algorithm=hashes.SHA256(),
length=32, # 256 bits
salt=salt_value,
info=b"",
)
derived_key = hkdf.derive(ikm)
self.hkdf_key = derived_key.hex()
self.state["key_exchange_complete"] = True
print(f"{GREEN}[HKDF]{RESET} Derived HKDF key: {self.hkdf_key}")
return True
# -------------------------------------------------------------------------
# Legacy Auto-responder helpers (kept for backward compatibility)
# -------------------------------------------------------------------------
def _auto_respond_ping(self, index: int):
"""
Called by a Timer to respond automatically to a PING_REQUEST after 2s.
"""
print(f"{BLUE}[AUTO]{RESET} Delayed responding to PING at index={index}")
self.respond_to_ping(index, answer=1) # Accept by default
self.show_state()
def _auto_respond_handshake(self, index: int):
"""
Called by a Timer to handle inbound HANDSHAKE automatically.
1) Generate ephemeral keys if not already set
2) Compute ECDH with the inbound ephemeral pub (generate_ecdhe)
3) Send our handshake back
4) Show state
"""
print(f"{BLUE}[AUTO]{RESET} Delayed ECDH process for HANDSHAKE at index={index}")
# 1) Generate ephemeral keys if we don't have them
if not self.ephemeral_privkey or not self.ephemeral_pubkey:
self.generate_ephemeral_keys()
# 2) Compute ECDH from inbound ephemeral pub
self.generate_ecdhe(index)
# 3) Send our handshake to the peer
self.send_handshake()
# 4) Show final state
self.show_state()
# -------------------------------------------------------------------------
# Public Methods for Auto Mode Management
# -------------------------------------------------------------------------
def start_auto_mode(self):
"""Start the automatic protocol operation mode."""
self.auto_mode.start()
def stop_auto_mode(self):
"""Stop the automatic protocol operation mode."""
self.auto_mode.stop()
def configure_auto_mode(self, **kwargs):
"""
Configure the automatic mode parameters.
Args:
**kwargs: Configuration parameters to set. Supported parameters:
- ping_response_accept: bool, whether to accept incoming pings
- ping_auto_initiate: bool, whether to initiate pings on connection
- ping_retry_count: int, number of ping retries
- ping_retry_delay: float, seconds between ping retries
- ping_timeout: float, seconds to wait for ping response
- preferred_cipher: int, preferred cipher (0=AES-GCM, 1=ChaCha20-Poly1305)
- handshake_retry_count: int, number of handshake retries
- handshake_retry_delay: float, seconds between handshake retries
- handshake_timeout: float, seconds to wait for handshake
- auto_message_enabled: bool, whether to auto-send messages
- message_interval: float, seconds between auto messages
- message_content: str, default message content
- active_mode: bool, whether to actively initiate protocol
"""
for key, value in kwargs.items():
if hasattr(self.auto_mode.config, key):
setattr(self.auto_mode.config, key, value)
print(f"{BLUE}[CONFIG]{RESET} Set auto mode {key} = {value}")
else:
print(f"{RED}[ERROR]{RESET} Unknown auto mode configuration parameter: {key}")
def get_auto_mode_config(self):
"""Return the current auto mode configuration."""
return self.auto_mode.config
def queue_auto_message(self, message: str):
"""
Add a message to the auto-send queue.
Args:
message: Message text to send
"""
self.auto_mode.queue_message(message)
def toggle_auto_mode_logging(self):
"""
Toggle detailed logging for auto mode.
When enabled, will show more information about state transitions and decision making.
"""
if not hasattr(self.auto_mode, 'verbose_logging'):
self.auto_mode.verbose_logging = True
else:
self.auto_mode.verbose_logging = not self.auto_mode.verbose_logging
status = "enabled" if self.auto_mode.verbose_logging else "disabled"
print(f"{BLUE}[AUTO-LOG]{RESET} Detailed logging {status}")
def debug_message(self, index: int):
"""
Debug a message in the inbound message queue.
Prints detailed information about the message.
Args:
index: The index of the message in the inbound_messages queue
"""
if index < 0 or index >= len(self.inbound_messages):
print(f"{RED}[ERROR]{RESET} Invalid message index {index}")
return
msg = self.inbound_messages[index]
print(f"\n{YELLOW}=== Message Debug [{index}] ==={RESET}")
print(f"Type: {msg['type']}")
print(f"Length: {len(msg['raw'])} bytes = {len(msg['raw'])*8} bits")
print(f"Raw data: {msg['raw'].hex()}")
if msg['parsed'] is not None:
print(f"\n{YELLOW}--- Parsed Data ---{RESET}")
if msg['type'] == 'PING_REQUEST':
ping = msg['parsed']
print(f"Version: {ping.version}")
print(f"Cipher: {ping.cipher} ({'AES-256-GCM' if ping.cipher == 0 else 'ChaCha20-Poly1305' if ping.cipher == 1 else 'Unknown'})")
print(f"Session nonce: {ping.session_nonce.hex()}")
print(f"CRC32: {ping.crc32:08x}")
elif msg['type'] == 'PING_RESPONSE':
resp = msg['parsed']
print(f"Version: {resp.version}")
print(f"Cipher: {resp.cipher} ({'AES-256-GCM' if resp.cipher == 0 else 'ChaCha20-Poly1305' if resp.cipher == 1 else 'Unknown'})")
print(f"Answer: {resp.answer} ({'Accept' if resp.answer == 1 else 'Reject'})")
print(f"CRC32: {resp.crc32:08x}")
elif msg['type'] == 'HANDSHAKE':
hs = msg['parsed']
print(f"Ephemeral pubkey: {hs.ephemeral_pubkey.hex()[:16]}...")
print(f"Ephemeral signature: {hs.ephemeral_signature.hex()[:16]}...")
print(f"PFS hash: {hs.pfs_hash.hex()[:16]}...")
print(f"Timestamp: {hs.timestamp}")
print(f"CRC32: {hs.crc32:08x}")
elif msg['type'] == 'ENCRYPTED_MESSAGE':
header = msg['parsed']
print(f"Flag: 0x{header.flag:04x}")
print(f"Data length: {header.data_len} bytes")
print(f"Retry: {header.retry}")
print(f"Connection status: {header.connection_status} ({'CRC included' if header.connection_status & 0x01 else 'No CRC'})")
print(f"IV: {header.iv.hex()}")
# Calculate expected message size
expected_len = 18 + header.data_len + 16 # Header + payload + tag
if header.connection_status & 0x01:
expected_len += 4 # Add CRC
print(f"Expected total length: {expected_len} bytes")
print(f"Actual length: {len(msg['raw'])} bytes")
# If we have a key, try to decrypt
if self.hkdf_key:
print("\nAttempting decryption...")
try:
key = bytes.fromhex(self.hkdf_key)
plaintext = decrypt_message(msg['raw'], key, self.cipher_type)
print(f"Decrypted: {plaintext.decode('utf-8')}")
except Exception as e:
print(f"Decryption failed: {e}")
print()
# -------------------------------------------------------------------------
# Public Methods
# -------------------------------------------------------------------------
def connect_to_peer(self, port: int):
conn = transmission.connect_to_peer("127.0.0.1", port, self.on_data_received)
self.connections.append(conn)
print(f"{GREEN}[IcingProtocol]{RESET} Outgoing connection to port {port} established.")
# Notify auto mode
self.auto_mode.handle_connection_established()
def set_peer_identity(self, peer_pubkey_hex: str):
pubkey_bytes = bytes.fromhex(peer_pubkey_hex)
self.peer_identity_pubkey_obj = load_peer_identity_key(pubkey_bytes)
self.peer_identity_pubkey_bytes = pubkey_bytes
print(f"{GREEN}[IcingProtocol]{RESET} Stored peer identity pubkey (hex={peer_pubkey_hex[:16]}...).")
def generate_ephemeral_keys(self):
self.ephemeral_privkey, self.ephemeral_pubkey = get_ephemeral_keypair()
print(f"{GREEN}[IcingProtocol]{RESET} Generated ephemeral key pair: pubkey={self.ephemeral_pubkey.hex()[:16]}...")
# Send PING (session discovery and cipher negotiation)
def send_ping_request(self, cipher_type=0):
"""
Send a ping request to the first connected peer.
Args:
cipher_type: Preferred cipher type (0 = AES-256-GCM, 1 = ChaCha20-Poly1305)
"""
if not self.connections:
print(f"{RED}[ERROR]{RESET} No active connections.")
return False
# Validate cipher type
if cipher_type not in (0, 1):
print(f"{YELLOW}[WARNING]{RESET} Invalid cipher type {cipher_type}, defaulting to AES-256-GCM (0)")
cipher_type = 0
# Create ping request with specified cipher
ping_request = PingRequest(version=0, cipher=cipher_type)
# Store session nonce if not already set
if self.session_nonce is None:
self.session_nonce = ping_request.session_nonce
print(f"{YELLOW}[NOTICE]{RESET} Stored session nonce from sent PING.")
# Serialize and send
pkt = ping_request.serialize()
self._send_packet(self.connections[0], pkt, "PING_REQUEST")
self.state["ping_sent"] = True
return True
def send_handshake(self):
"""
Build and send handshake:
- ephemeral_pubkey (64 bytes, raw x||y)
- ephemeral_signature (64 bytes, raw r||s)
- pfs_hash (32 bytes)
- timestamp (32 bits)
- CRC (32 bits)
"""
if not self.connections:
print(f"{RED}[ERROR]{RESET} No active connections.")
return False
if not self.ephemeral_privkey or not self.ephemeral_pubkey:
print(f"{RED}[ERROR]{RESET} Ephemeral keys not generated.")
return False
if self.peer_identity_pubkey_bytes is None:
print(f"{RED}[ERROR]{RESET} Peer identity not set; needed for PFS tracking.")
return False
# 1) Sign ephemeral_pubkey using identity key
sig_der = sign_data(self.identity_privkey, self.ephemeral_pubkey)
# Convert DER signature to raw r||s format (64 bytes)
raw_signature = der_to_raw(sig_der)
# 2) Compute PFS hash
session_number, last_secret_hex = self.pfs_history.get(self.peer_identity_pubkey_bytes, (-1, ""))
pfs = compute_pfs_hash(session_number, last_secret_hex)
# 3) Create handshake object
handshake = Handshake(
ephemeral_pubkey=self.ephemeral_pubkey,
ephemeral_signature=raw_signature,
pfs_hash=pfs
)
# 4) Serialize and send
pkt = handshake.serialize()
self._send_packet(self.connections[0], pkt, "HANDSHAKE")
self.state["handshake_sent"] = True
return True
def enable_auto_responder(self, enable: bool):
"""
Legacy method for enabling/disabling auto responder.
For new code, use start_auto_mode() and stop_auto_mode() instead.
"""
self.auto_responder = enable
print(f"{YELLOW}[LEGACY]{RESET} Auto responder set to {enable}. Consider using auto_mode instead.")
# -------------------------------------------------------------------------
# Manual Responses
# -------------------------------------------------------------------------
def respond_to_ping(self, index: int, answer: int):
"""
Respond to a ping request with the specified answer (0 = no, 1 = yes).
If answer is 1, we accept the connection and use the cipher specified in the request.
"""
if index < 0 or index >= len(self.inbound_messages):
print(f"{RED}[ERROR]{RESET} Invalid index {index}.")
return False
msg = self.inbound_messages[index]
if msg["type"] != "PING_REQUEST":
print(f"{RED}[ERROR]{RESET} inbound_messages[{index}] is not a PING_REQUEST.")
return False
ping_request = msg["parsed"]
version = ping_request.version
cipher = ping_request.cipher
# Force cipher to 0 or 1 (only AES-256-GCM and ChaCha20-Poly1305 are supported)
if cipher != 0 and cipher != 1:
print(f"{YELLOW}[NOTICE]{RESET} Received PING with unsupported cipher ({cipher}); forcing cipher to 0 in response.")
cipher = 0
# Store the negotiated cipher type if we're accepting
if answer == 1:
self.cipher_type = cipher
conn = msg["connection"]
# Create ping response
ping_response = PingResponse(version, cipher, answer)
resp = ping_response.serialize()
self._send_packet(conn, resp, "PING_RESPONSE")
print(f"{BLUE}[MANUAL]{RESET} Responded to ping with answer={answer}.")
return True
def generate_ecdhe(self, index: int):
"""
Process a handshake message:
1. Verify the ephemeral signature
2. Compute the ECDH shared secret
3. Update PFS history
"""
if index < 0 or index >= len(self.inbound_messages):
print(f"{RED}[ERROR]{RESET} Invalid index {index}.")
return False
msg = self.inbound_messages[index]
if msg["type"] != "HANDSHAKE":
print(f"{RED}[ERROR]{RESET} inbound_messages[{index}] is not a HANDSHAKE.")
return False
handshake = msg["parsed"]
# Convert raw signature to DER for verification
raw_sig = handshake.ephemeral_signature
sig_der = raw_signature_to_der(raw_sig)
# Verify signature
ok = verify_signature(self.peer_identity_pubkey_obj, sig_der, handshake.ephemeral_pubkey)
if not ok:
print(f"{RED}[ERROR]{RESET} Ephemeral signature invalid.")
return False
print(f"{GREEN}[OK]{RESET} Ephemeral signature verified.")
# Check if we have ephemeral keys
if not self.ephemeral_privkey:
print(f"{YELLOW}[WARN]{RESET} No ephemeral_privkey available, cannot compute shared secret.")
return False
# Compute ECDH shared secret
shared = compute_ecdh_shared_key(self.ephemeral_privkey, handshake.ephemeral_pubkey)
self.shared_secret = shared.hex()
print(f"{GREEN}[OK]{RESET} Computed ECDH shared key = {self.shared_secret}")
# Update PFS history
old_session, _ = self.pfs_history.get(self.peer_identity_pubkey_bytes, (-1, ""))
new_session = 1 if old_session < 0 else old_session + 1
self.pfs_history[self.peer_identity_pubkey_bytes] = (new_session, self.shared_secret)
return True
# -------------------------------------------------------------------------
# Utility
# -------------------------------------------------------------------------
def _send_packet(self, conn: transmission.PeerConnection, data: bytes, label: str):
bits_count = len(data) * 8
print(f"{BLUE}[SEND]{RESET} {label} -> {bits_count} bits: {data.hex()[:60]}{'...' if len(data.hex())>60 else ''}")
conn.send(data)
def show_state(self):
print(f"\n{YELLOW}=== Global State ==={RESET}")
print(f"Listening Port: {self.local_port}")
print(f"Identity PubKey: 512 bits => {self.identity_pubkey.hex()[:16]}...")
if self.peer_identity_pubkey_bytes:
print(f"Peer Identity PubKey: 512 bits => {self.peer_identity_pubkey_bytes.hex()[:16]}...")
else:
print("Peer Identity PubKey: [None]")
print("\nEphemeral Keys:")
if self.ephemeral_pubkey:
print(f" ephemeral_pubkey: 512 bits => {self.ephemeral_pubkey.hex()[:16]}...")
else:
print(" ephemeral_pubkey: [None]")
print(f"\nShared Secret: {self.shared_secret if self.shared_secret else '[None]'}")
if self.hkdf_key:
print(f"HKDF Derived Key: {self.hkdf_key} (size: {len(self.hkdf_key)*8} bits)")
else:
print("HKDF Derived Key: [None]")
print(f"Negotiated Cipher: {'AES-256-GCM' if self.cipher_type == 0 else 'ChaCha20-Poly1305'} (code: {self.cipher_type})")
if self.session_nonce:
print(f"Session Nonce: {self.session_nonce.hex()} (129 bits)")
else:
print("Session Nonce: [None]")
if self.last_iv:
print(f"Last IV: {self.last_iv.hex()} (96 bits)")
else:
print("Last IV: [None]")
print("\nProtocol Flags:")
for k, v in self.state.items():
print(f" {k}: {v}")
print("\nAuto Mode Active:", self.auto_mode.active)
print("Auto Mode State:", self.auto_mode.state)
print("Legacy Auto Responder:", self.auto_responder)
print("\nActive Connections:")
for i, c in enumerate(self.connections):
print(f" [{i}] Alive={c.alive}")
print("\nInbound Message Queue:")
for i, m in enumerate(self.inbound_messages):
print(f" [{i}] type={m['type']} len={len(m['raw'])} bytes => {len(m['raw']) * 8} bits")
print()
def stop(self):
"""Stop the protocol and clean up resources."""
# Stop auto mode first
self.auto_mode.stop()
# Stop server listener
self.server_listener.stop()
# Close all connections
for c in self.connections:
c.close()
self.connections.clear()
self.inbound_messages.clear()
print(f"{RED}[STOP]{RESET} Protocol stopped.")
# -------------------------------------------------------------------------
# Encrypted Messaging
# -------------------------------------------------------------------------
def send_encrypted_message(self, plaintext: str):
"""
Encrypts and sends a message using the derived HKDF key and negotiated cipher.
The message format is:
- Header (18 bytes): flag, data_len, retry, connection_status, IV
- Payload: variable length encrypted data
- Footer: Authentication tag (16 bytes) + optional CRC32 (4 bytes)
"""
if not self.connections:
print(f"{RED}[ERROR]{RESET} No active connections.")
return False
if not self.hkdf_key:
print(f"{RED}[ERROR]{RESET} No HKDF key derived. Cannot encrypt message.")
return False
# Get the encryption key
key = bytes.fromhex(self.hkdf_key)
# Convert plaintext to bytes
plaintext_bytes = plaintext.encode('utf-8')
# Generate or increment the IV
if self.last_iv is None:
# First message, generate random IV
iv = generate_iv(initial=True)
else:
# Subsequent message, increment previous IV
iv = generate_iv(initial=False, previous_iv=self.last_iv)
# Store the new IV
self.last_iv = iv
# Create encrypted message (connection_status 0 = no CRC)
encrypted = encrypt_message(
plaintext=plaintext_bytes,
key=key,
flag=0xBEEF, # Default flag
retry=0,
connection_status=0, # No CRC
iv=iv,
cipher_type=self.cipher_type
)
# Send the encrypted message
self._send_packet(self.connections[0], encrypted, "ENCRYPTED_MESSAGE")
print(f"{GREEN}[SEND_ENCRYPTED]{RESET} Encrypted message sent.")
return True
def decrypt_received_message(self, index: int):
"""
Decrypt a received encrypted message using the HKDF key and negotiated cipher.
"""
if index < 0 or index >= len(self.inbound_messages):
print(f"{RED}[ERROR]{RESET} Invalid message index.")
return None
msg = self.inbound_messages[index]
if msg["type"] != "ENCRYPTED_MESSAGE":
print(f"{RED}[ERROR]{RESET} Message at index {index} is not an ENCRYPTED_MESSAGE.")
return None
# Get the encrypted message
encrypted = msg["raw"]
if not self.hkdf_key:
print(f"{RED}[ERROR]{RESET} No HKDF key derived. Cannot decrypt message.")
return None
# Get the encryption key
key = bytes.fromhex(self.hkdf_key)
try:
# Decrypt the message
plaintext = decrypt_message(encrypted, key, self.cipher_type)
# Convert to string
plaintext_str = plaintext.decode('utf-8')
# Update last IV from the header
header = MessageHeader.unpack(encrypted[:18])
self.last_iv = header.iv
print(f"{GREEN}[DECRYPTED]{RESET} Decrypted message: {plaintext_str}")
return plaintext_str
except Exception as e:
print(f"{RED}[ERROR]{RESET} Decryption failed: {e}")
return None

View File

@ -0,0 +1,7 @@
# System install
Docker
Python3
# Venv install
PyQt5
dissononce

View File

@ -1,100 +0,0 @@
import socket
import threading
from typing import Callable
class PeerConnection:
"""
Represents a live, two-way connection to a peer.
We keep a socket open, read data in a background thread,
and can send data from the main thread at any time.
"""
def __init__(self, sock: socket.socket, on_data_received: Callable[['PeerConnection', bytes], None]):
self.sock = sock
self.on_data_received = on_data_received
self.alive = True
self.read_thread = threading.Thread(target=self.read_loop, daemon=True)
self.read_thread.start()
def read_loop(self):
while self.alive:
try:
data = self.sock.recv(4096)
if not data:
break
self.on_data_received(self, data)
except OSError:
break
self.alive = False
self.sock.close()
print("[PeerConnection] Connection closed.")
def send(self, data: bytes):
if not self.alive:
print("[PeerConnection.send] Cannot send, connection not alive.")
return
try:
self.sock.sendall(data)
except OSError:
print("[PeerConnection.send] Send failed, connection might be closed.")
self.alive = False
def close(self):
self.alive = False
try:
self.sock.shutdown(socket.SHUT_RDWR)
except OSError:
pass
self.sock.close()
class ServerListener(threading.Thread):
"""
A thread that listens on a given port. When a new client connects,
it creates a PeerConnection for that client.
"""
def __init__(self, host: str, port: int,
on_new_connection: Callable[[PeerConnection], None],
on_data_received: Callable[[PeerConnection, bytes], None]):
super().__init__(daemon=True)
self.host = host
self.port = port
self.on_new_connection = on_new_connection
self.on_data_received = on_data_received
self.server_socket = None
self.stop_event = threading.Event()
def run(self):
self.server_socket = socket.socket(socket.AF_INET, socket.SOCK_STREAM)
self.server_socket.bind((self.host, self.port))
self.server_socket.listen(5)
self.server_socket.settimeout(1.0)
print(f"[ServerListener] Listening on {self.host}:{self.port}")
while not self.stop_event.is_set():
try:
client_sock, addr = self.server_socket.accept()
print(f"[ServerListener] Accepted connection from {addr}")
conn = PeerConnection(client_sock, self.on_data_received)
self.on_new_connection(conn)
except socket.timeout:
pass
except OSError:
break
if self.server_socket:
self.server_socket.close()
def stop(self):
self.stop_event.set()
if self.server_socket:
self.server_socket.close()
def connect_to_peer(host: str, port: int,
on_data_received: Callable[[PeerConnection, bytes], None]) -> PeerConnection:
sock = socket.socket(socket.AF_INET, socket.SOCK_STREAM)
sock.connect((host, port))
print(f"[connect_to_peer] Connected to {host}:{port}")
conn = PeerConnection(sock, on_data_received)
return conn

View File

@ -2,10 +2,6 @@
<a href="https://github.com/AlexisDanlos" target="_blank">Alexis DANLOS</a>
{{end}}
{{define "ange"}}
<a href="https://yw5n.com" target="_blank">Ange DUHAYON</a>
{{end}}
{{define "bartosz"}}
<a href="https://github.com/Bartoszkk" target="_blank">Bartosz MICHALAK</a>
{{end}}